ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªº¯Êýf£¨x£©=lnx£¬g£¨x£©=ax2-bx£¨a¡Ù0£©£®£¨¢ñ£©µ±b=0ʱ£¬Çóº¯Êýh£¨x£©=f£¨x£©-g£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©µ±b=1ʱ£¬»Ø´ðÏÂÃæÁ½¸öÎÊÌ⣺
£¨i£©Èôº¯Êýy=f£¨x£©Ó뺯Êýy=g£¨x£©µÄͼÏóÔÚ¹«¹²µãP´¦ÓÐÏàͬµÄÇÐÏߣ®ÇóʵÊýaµÄÖµ£»
£¨ii£©Èôº¯Êýy=f£¨x£©Ó뺯Êýy=g£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬µÄ½»µãM£¬N£®¹ýÏ߶ÎMNµÄÖеã×÷xÖáµÄ´¹Ïߣ¬·Ö±ðÓëf£¨x£©£¬g£¨x£©µÄͼÏó½»ÓÚS£¬TÁ½µã£®ÒÔSΪÇеã×÷f£¨x£©µÄÇÐl1£¬ÒÔTΪÇеã×÷g£¨x£©µÄÇÐÏßl2£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃl1¡Îl2£¬Èô´æÔÚ£®Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒ⣬h£¨x£©=f£¨x£©-g£¨x£©=lnx-ax2£¨x£¾0£©£¬Ç󵼿ɵÃh¡ä£¨x£©=$\frac{1}{x}$-2ax=$\frac{1-2a{x}^{2}}{x}$£¬´Ó¶øÓɵ¼ÊýµÄÌÖÂÛÈ·¶¨Æäµ¥µ÷ÐÔ¼°µ¥µ÷Çø¼ä£»
£¨¢ò£©£¨i£©É躯Êýy=f£¨x£©Ó뺯Êýy=g£¨x£©µÄͼÏóµÄ¹«¹²µãP£¨x0£¬y0£©£¬ÔòÓÐlnx0=ax02-x0£¬f¡ä£¨x0£©=g¡ä£¨x0£©£¬´Ó¶ø¿ÉµÃlnx0=$\frac{1}{2}$-$\frac{1}{2}$x0£»ÔÙÁîH£¨x£©=lnx-$\frac{1}{2}$+$\frac{1}{2}$x£¬H¡ä£¨x£©=$\frac{1}{x}$+$\frac{1}{2}$£¾0£»´Ó¶øÇóa£»
£¨ii£©²»·ÁÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©ÇÒx1£¾x2£¬ÔòMNÖеãµÄ×ø±êΪ£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©£»´Ó¶øд³öÇÐÏßµÄбÂÊk1=f¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=$\frac{2}{{x}_{1}+{x}_{2}}$£¬k2=g¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=a£¨x1+x2£©-1£¬´Ó¶øÈç¹û´æÔÚaʹµÃk1=k2£¬$\frac{2}{{x}_{1}+{x}_{2}}$=a£¨x1+x2£©-1£¬ÔÙ½áºÏlnx1=ax12-x1ºÍlnx2=ax22-x2µÃln$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2£¨\frac{{x}_{1}}{{x}_{2}}-1£©}{\frac{{x}_{1}}{{x}_{2}}+1}$£»Éèu=$\frac{{x}_{1}}{{x}_{2}}$£¾1£¬ÔòÓÐlnu=$\frac{2£¨u-1£©}{u+1}$£¬£¨u£¾1£©£»´Ó¶ø¿ÉÈ·¶¨Âú×ãÌõ¼þµÄʵÊýa²¢²»´æÔÚ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬h£¨x£©=f£¨x£©-g£¨x£©=lnx-ax2£¨x£¾0£©£¬
ËùÒÔ£¬h¡ä£¨x£©=$\frac{1}{x}$-2ax=$\frac{1-2a{x}^{2}}{x}$£¬
ËùÒÔ£¬µ±a¡Ü0ʱ£¬h¡ä£¨x£©£¾0£¬h£¨x£©µ¥µ÷µÝÔö£»
µ±a£¾0ʱ£¬f£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£¨0£¬$\sqrt{\frac{1}{2a}}$£©£¬µ¥µ÷¼õÇø¼äΪ£¨$\sqrt{\frac{1}{2a}}$£¬+¡Þ£©£®
£¨¢ò£©£¨i£©É躯Êýy=f£¨x£©Ó뺯Êýy=g£¨x£©µÄͼÏóµÄ¹«¹²µãP£¨x0£¬y0£©£¬ÔòÓÐ
lnx0=ax02-x0£¬¢Ù
ÓÖÔÚµãPÓй²Í¬µÄÇÐÏߣ¬
¡àf¡ä£¨x0£©=g¡ä£¨x0£©£¬
¼´$\frac{1}{{x}_{0}}$=2ax0-1£¬
¼´a=$\frac{1+{x}_{0}}{2{x}_{0}^{2}}$´úÈë¢ÙµÃ
lnx0=$\frac{1}{2}$-$\frac{1}{2}$x0£»
ÉèH£¨x£©=lnx-$\frac{1}{2}$+$\frac{1}{2}$x£¬H¡ä£¨x£©=$\frac{1}{x}$+$\frac{1}{2}$£¾0£»
ËùÒÔº¯ÊýH£¨x£©×î¶àÖ»ÓÐ1¸öÁãµã£¬¹Û²ìµÃx0=1ÊÇÁãµã£®
¡àa=1£¬´ËʱP£¨1£¬0£©£®
£¨ii£©²»·ÁÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©ÇÒx1£¾x2£¬ÔòMNÖеãµÄ×ø±êΪ£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©£»
ÒÔSΪÇеãµÄÇÐÏßl1µÄбÂÊk1=f¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=$\frac{2}{{x}_{1}+{x}_{2}}$£¬
ÒÔTΪÇеãµÄÇÐÏßl2µÄбÂÊk2=g¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=a£¨x1+x2£©-1£¬
Èç¹û´æÔÚaʹµÃk1=k2£¬$\frac{2}{{x}_{1}+{x}_{2}}$=a£¨x1+x2£©-1£¬¢Ù
¶øÇÒÓÐlnx1=ax12-x1ºÍlnx2=ax22-x2£¬
Èç¹û½«¢ÙµÄÁ½±ß³Ëx1-x2µÃ²¢¼ò¿ÉµÃ£¬
$\frac{2£¨{x}_{1}-{x}_{2}£©}{{x}_{1}+{x}_{2}}$=ax12-x1-£¨ax22-x2£©=lnx1-lnx2=ln$\frac{{x}_{1}}{{x}_{2}}$£¬
¼´£¬ln$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2£¨\frac{{x}_{1}}{{x}_{2}}-1£©}{\frac{{x}_{1}}{{x}_{2}}+1}$£»
Éèu=$\frac{{x}_{1}}{{x}_{2}}$£¾1£¬ÔòÓÐlnu=$\frac{2£¨u-1£©}{u+1}$£¬£¨u£¾1£©£»
¿¼²ìF£¨u£©=lnu-$\frac{2£¨u-1£©}{u+1}$£¬£¨u£¾1£©µÄµ¥µ÷ÐÔ²»ÄÑ·¢ÏÖ£¬
F£¨u£©ÔÚ[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬¹ÊF£¨u£©£¾F£¨1£©=0£¬
ËùÒÔ£¬Âú×ãÌõ¼þµÄʵÊýa²¢²»´æÔÚ£®
µãÆÀ ±¾Ì⿼²éÁ˵¼ÊýµÄ×ÛºÏÓ¦Óü°»¯¼ò¼°ÕûÌå´ú»»µÄÓ¦Ó㬻¯¼òÔËËãºÜÀ§ÄÑ£¬ÊôÓÚÄÑÌ⣮
A£® | 4 | B£® | 21+$\sqrt{3}$ | C£® | 3$\sqrt{3}$+12 | D£® | $\frac{{3\sqrt{3}}}{2}$+12 |