题目内容
已知关于x的方程mx2-3(m-1)x+2m-3=0.(1)求证:无论m取任何实数时,方程总有实数根;
(2)若关于x的二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称.
①求这个二次函数的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)的条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.求二次函数y3=ax2+bx+c的解析式.
分析:(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:
①m=0,此时方程为一元一次方程,经计算可知一定有实数根;
②m≠0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明.
(2)①由于抛物线的图象关于y轴对称,那么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的解析式;
②此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明.
(3)根据②的结论,易知y1、y2的交点为(1,0),由于y1≥y3≥y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3≥y2,所以y≥0,可据此求出a的值,即可得到抛物线的解析式.
①m=0,此时方程为一元一次方程,经计算可知一定有实数根;
②m≠0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明.
(2)①由于抛物线的图象关于y轴对称,那么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的解析式;
②此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明.
(3)根据②的结论,易知y1、y2的交点为(1,0),由于y1≥y3≥y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3≥y2,所以y≥0,可据此求出a的值,即可得到抛物线的解析式.
解答:解:(1)分两种情况:
当m=0时,原方程化为3x-3=0,解得x=1,
∴当m=0,原方程有实数根.(1分)
当m≠0时,原方程为关于x的一元二次方程,
∵△=[-3(m-1)]2-4m(2m-3)=m2-6m+9=(m-3)2≥0.
∴原方程有两个实数根.
综上所述,m取任何实数时,方程总有实数根.(3分)
(2)①∵关于x的二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称,
∴3(m-1)=0.∴m=1.∴抛物线的解析式为y1=x2-1…(5分)
②∵y1-y2=x2-1-(2x-2)=(x-1)2≥0,
∴y1≥y2(当且仅当x=1时,等号成立).…(6分)
(3)由②知,当x=1时,y1=y2=0.∴y1、y2的图象都经过(1,0).
∵对于x的同一个值,y1≥y3≥y2,
∴y3=ax2+bx+c的图象必经过(1,0).(7分)
又∵y3=ax2+bx+c经过(-5,0),∴y3=a(x-1)(x+5)=ax2+4ax-5a.
设y=y3-y2=ax2+4ax-5a-(2x-2)=ax2+(4a-2)x+(2-5a).
∵对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,
∴y3-y2≥0,
∴y=ax2+(4a-2)x+(2-5a)≥0.
又根据y1、y2的图象可得 a>0,
∴y最小=
≥0.
∴(4a-2)2-4a(2-5a)≤0.∴(3a-1)2≤0.
而(3a-1)2≥0.只有3a-1=0,解得a=
.
∴抛物线的解析式为y3=
x2+
x-
…(10分)
当m=0时,原方程化为3x-3=0,解得x=1,
∴当m=0,原方程有实数根.(1分)
当m≠0时,原方程为关于x的一元二次方程,
∵△=[-3(m-1)]2-4m(2m-3)=m2-6m+9=(m-3)2≥0.
∴原方程有两个实数根.
综上所述,m取任何实数时,方程总有实数根.(3分)
(2)①∵关于x的二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称,
∴3(m-1)=0.∴m=1.∴抛物线的解析式为y1=x2-1…(5分)
②∵y1-y2=x2-1-(2x-2)=(x-1)2≥0,
∴y1≥y2(当且仅当x=1时,等号成立).…(6分)
(3)由②知,当x=1时,y1=y2=0.∴y1、y2的图象都经过(1,0).
∵对于x的同一个值,y1≥y3≥y2,
∴y3=ax2+bx+c的图象必经过(1,0).(7分)
又∵y3=ax2+bx+c经过(-5,0),∴y3=a(x-1)(x+5)=ax2+4ax-5a.
设y=y3-y2=ax2+4ax-5a-(2x-2)=ax2+(4a-2)x+(2-5a).
∵对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,
∴y3-y2≥0,
∴y=ax2+(4a-2)x+(2-5a)≥0.
又根据y1、y2的图象可得 a>0,
∴y最小=
4a(2-5a)-(4a-2)2 |
4a |
∴(4a-2)2-4a(2-5a)≤0.∴(3a-1)2≤0.
而(3a-1)2≥0.只有3a-1=0,解得a=
1 |
3 |
∴抛物线的解析式为y3=
1 |
3 |
4 |
3 |
5 |
3 |
点评:此题主要考查了二次函数与一元二次方程的关系、根的判别式、完全平方公式、非负数的性质以及用待定系数法确定函数解析式的方法,难度较大.
练习册系列答案
相关题目
已知关已知关于x的方程2x2-mx-1=0在区间(0,1)上恰有一个实数根,则实数m的取值范围是( )
A、(0,1) | B、(0,+∝) | C、(1,+∝) | D、(-∝,1) |