题目内容
(2013•宁波模拟)等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为sn
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)若数列{bn}满足 bn=
,其前n项和为Tn,求证Tn<
.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)若数列{bn}满足 bn=
1 |
sn+1-1 |
3 |
4 |
分析:(Ⅰ)由2a1+3a2=11,2a3=a2+a6-4,利用等差数列的通项公式求出a1=1,d=2,由此能求出an.
(Ⅱ)由a1=1,d=2,知Sn=n2.从而得到bn=
=
(
-
),由此利用裂项求和法证明Tn<
.
(Ⅱ)由a1=1,d=2,知Sn=n2.从而得到bn=
1 |
Sn+1-1 |
1 |
2 |
1 |
n |
1 |
n+2 |
3 |
4 |
解答:解:(Ⅰ)等差数列{an}中,
∵2a1+3a2=11,2a3=a2+a6-4,
∴
,
解得a1=1,d=2,
∴an=1+2(n-1)=2n-1.
(Ⅱ)∵a1=1,d=2,
∴Sn=n+
×2=n2.
∴bn=
=
=
=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)
=
-
(
+
)<
.
∵2a1+3a2=11,2a3=a2+a6-4,
∴
|
解得a1=1,d=2,
∴an=1+2(n-1)=2n-1.
(Ⅱ)∵a1=1,d=2,
∴Sn=n+
n(n-1) |
2 |
∴bn=
1 |
Sn+1-1 |
1 |
(n+1)2-1 |
1 |
n2+2n |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴Tn=
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n-1 |
1 |
n+1 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=
3 |
4 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目