题目内容

(2013•宁波模拟)等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为sn
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)若数列{bn}满足 bn=
1
sn+1-1
,其前n项和为Tn,求证Tn
3
4
分析:(Ⅰ)由2a1+3a2=11,2a3=a2+a6-4,利用等差数列的通项公式求出a1=1,d=2,由此能求出an
(Ⅱ)由a1=1,d=2,知Sn=n2.从而得到bn=
1
Sn+1-1
=
1
2
1
n
-
1
n+2
),由此利用裂项求和法证明Tn
3
4
解答:解:(Ⅰ)等差数列{an}中,
∵2a1+3a2=11,2a3=a2+a6-4,
2a1+3a1+3d=11
2a1+2d=a1+d+a1+5d-4

解得a1=1,d=2,
∴an=1+2(n-1)=2n-1.
(Ⅱ)∵a1=1,d=2,
∴Sn=n+
n(n-1)
2
×2=n2
∴bn=
1
Sn+1-1
=
1
(n+1)2-1
=
1
n2+2n
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),
∴Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)
3
4
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网