题目内容

已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,有以下命题:

①f(x)的解析式为f(x)=x3-4x,x∈[-2,2];②f(x)的极值点有且仅有一个;③f(x)的最大值与最小值之和等于零.

其中正确的命题个数为

A.0                   B.1                    C.2                  D.3

解析:f(0)=c=0,

∴f′(x)=3x2+2ax+b,f′(1)=3+2a+b=-1,      ①

f(-1)=3-2a+b=-1.                                           ②

由①②得a=0,b=-4.

∴f(x)=x3-4x.

∴f′(x)=3x2-4.

令f′(x)=0,解得x=±.

∴②错;

f(),f(-),f(-2),f(2)中最大值为f(),最小值为f(-).

又f(-)+f()=0,③对,故选C.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网