题目内容
已知函数f(x)定义在区间(-1,1)上,f(1 |
2 |
x-y |
1-xy |
1 |
2 |
2an | ||
1+
|
1 |
f(a1) |
1 |
f(a2) |
1 |
f(an) |
(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(an)的表达式;
(3)是否存在正整数m,使得对任意n∈N,都有bn<
m-8 |
4 |
分析:(1)用赋值法:先x=y=0推f(0)=0,再令x=0推f(-y)=-f(y),即可证明:f(x)在(-1,1)上为奇函数;
(2)先求出数列 {f(an)}的首项,再利用题中条件an+1=
以及f(x)-f(y)=f(
)求出f(an)与f(an+1)之间的递推关系,即可求 f(an)的表达式;
(3)先利用(2)的结论求出bn的表达式,再代入bn<
利用函数的单调性求出最值即可求出m的最小值.
(2)先求出数列 {f(an)}的首项,再利用题中条件an+1=
2an | ||
1+
|
x-y |
1-xy |
(3)先利用(2)的结论求出bn的表达式,再代入bn<
m-8 |
4 |
解答:解:(1)证明:令x=y=0,则f(0)=0,再令x=0,得f(0)-f(y)=f(-y),
∴f(-y)=-f(y),y∈(-1,1),
∴f(x)在(-1,1)上为奇函数.(3分)
(2)∵f(a1)=f(
)=-1,由(1)知f(x)+f(y)=f(
),
∴f(an+1)=f(
)=f(
)=f(an)+f(an)=2f(an),
即
=2
∴{f(an)}是以-1为首项,2为公比的等比数列,
∴f(an)=-2n-1.(7分)
(3)∵bn=-(1+
+
++
)=-
=-2+
.
若bn<
恒成立(n∈N+),则-2+
<
-2,即m>
.
∵n∈N+,∴当n=1时,
有最大值4,故m>4.
又∵m∈N,∴存在m=5,使得对任意n∈N+,有bn<
.(14分)
∴f(-y)=-f(y),y∈(-1,1),
∴f(x)在(-1,1)上为奇函数.(3分)
(2)∵f(a1)=f(
1 |
2 |
x+y |
1+xy |
∴f(an+1)=f(
2an | ||
1+
|
an+an |
1+an•an |
即
f(an+1) |
f(an) |
∴{f(an)}是以-1为首项,2为公比的等比数列,
∴f(an)=-2n-1.(7分)
(3)∵bn=-(1+
1 |
2 |
1 |
22 |
1 |
2n-1 |
1-
| ||
1-
|
1 |
2n-1 |
若bn<
m-8 |
4 |
1 |
2n-1 |
m |
4 |
4 |
2n-1 |
∵n∈N+,∴当n=1时,
4 |
2n-1 |
又∵m∈N,∴存在m=5,使得对任意n∈N+,有bn<
m-8 |
4 |
点评:本题是对数列与函数的综合考查,涉及到函数的奇偶性以及函数的最值,和数列的递推关系式的应用,是一道有难度的题.用赋值法来判断函数的奇偶性在作抽象函数的奇偶性判断时是很常用的.
练习册系列答案
相关题目