题目内容

已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且当x<0时,f(x)>0.
(Ⅰ)验证函数f(x)=ln
1-x
1+x
是否满足这些条件;
(Ⅱ)判断这样的函数是否具有奇偶性和其单调性,并加以证明.
分析:(I)先求定义域看其是否满足条件,然后验证函数是否满足f(x)+f(y)=f(
x+y
1+xy
)
,最后求出当x<0时的值域,看是否满足即可;
(II)要判定函数f(x)在(-1,1)上的奇偶性,只需判定f(-x)与f(x)的关系,先令x=y=0求出f(0),然后令y=-x即可判定,最后根据函数单调性的定义进行判定单调性.
解答:解:(Ⅰ)由
1-x
1+x
>0
可得-1<x<1,即其定义域为(-1,1)
f(x)+f(y)=ln
1-x
1+x
+ln
1-y
1+y
=ln(
1-x
1+x
1-y
1+y
)
=ln
1-x-y+xy
1+x+y+xy
=ln
1-
x+y
1+xy
1+
x+y
1+xy
=f(
x+y
1+xy
)

又当x<0时,1-x>1+x>0,∴
1-x
1+x
>1
ln
1-x
1+x
>0

f(x)=ln
1-x
1+x
满足这些条件.(3分)
(Ⅱ)∵f(0)+f(0)=f(0)?f(0)=0
∴f(-x)+f(x)=f(0)=0?f(-x)=-f(x)
∴f(x)在(-1,1)上是奇函数.
f(x)-f(y)=f(x)+f(-y)=f(
x-y
1-xy
)

当-1<x<y<1时,
x-y
1-xy
<0
,由条件知f(
x-y
1-xy
)>0

即f(x)-f(y)>0∴f(x)在(-1,1)上是减函数.
点评:本题主要考查抽象函数的奇偶性与单调性性,属于中档题,函数的奇偶性是函数在定义域上的“整体”性质,单调性是函数的“局部”性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网