题目内容
10.已知x,y都是正数.(1)若3x+2y=12,求xy的最大值;
(2)若x+2y=3,求$\frac{1}{x}+\frac{1}{y}$的最小值.
分析 (1)由于3x+2y=12,再根据xy=$\frac{1}{6}$•3x•2y,利用基本不等式求得xy的最大值.
(2)由x+2y=3,得到1=$\frac{x}{3}+\frac{2y}{3}$,故$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)($\frac{x}{3}+\frac{2y}{3}$),利用基本不等式求得最小值.
解答 解:(1)∵3x+2y=12,∴xy=$\frac{1}{6}$•3x•2y≤$\frac{1}{6}$×($\frac{3x+2y}{2}$)2=6,当且仅当3x=2y=6时,等号成立.
∴当且仅当3x=3时,xy取得最大值.
(2)∵x+2y=3,
∴1=$\frac{x}{3}+\frac{2y}{3}$,
∴$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)($\frac{x}{3}+\frac{2y}{3}$)=$\frac{1}{3}$+$\frac{2}{3}$+$\frac{x}{3y}$+$\frac{2y}{3x}$≥1+2$\sqrt{\frac{3}{3y}•\frac{2y}{3x}}$=1+$\frac{2\sqrt{3}}{3}$,当且仅当$\frac{x}{3y}$=$\frac{2y}{3x}$,即x=3$\sqrt{2}$-3,y=3-$\frac{3\sqrt{2}}{2}$时取等号,
∴最小值为$1+\frac{{2\sqrt{2}}}{3}$.
点评 本题主要考查基本不等式的应用,注意基本不等式的使用条件,以及等号成立的条件,式子的变形是解题的关键,属于基础题.
练习册系列答案
相关题目
20.设集合A={0,1,2,4},B={x∈R|1<x≤4},则A∩B=( )
A. | {1,2,3,4} | B. | {2,3,4} | C. | {2,4} | D. | {x|1<x≤4} |
19.下列各组函数中,表示同一个函数的是( )
A. | $f(x)=x,g(x)={(\sqrt{x})^2}$ | B. | $f(x)=x,g(x)=\sqrt{x^2}$ | ||
C. | $f(x)=\frac{{{x^2}-9}}{x-3},g(x)=x+3$ | D. | f(x)=x2+1,g(t)=t2+1 |