题目内容

 

在数列中,,且对任意.成等差数列,其公差为

(Ⅰ)若=,证明成等比数列(

(Ⅱ)若对任意成等比数列,其公比为

 

 

【答案】

 【解析】本小题主要考查等差数列的定义及通项公式,前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法。满分14分。

(Ⅰ)证明:由题设,可得

所以

=

=2k(k+1)

=0,得

于是

所以成等比数列。

(Ⅱ)证法一:(i)证明:由成等差数列,及成等比数列,得

≠1时,可知≠1,k

从而

所以是等差数列,公差为1。

(Ⅱ)证明:,可得,从而=1.由(Ⅰ)有

所以

因此,

以下分两种情况进行讨论:

(1)   当n为偶数时,设n=2m()

若m=1,则.

若m≥2,则

+

所以

(2)当n为奇数时,设n=2m+1(

所以从而···

综合(1)(2)可知,对任意,,有

证法二:(i)证明:由题设,可得

所以

可知。可得

所以是等差数列,公差为1。

(ii)证明:因为所以

所以,从而。于是,由(i)可知所以是公差为1的等差数列。由等差数列的通项公式可得= ,故

从而

所以,由,可得

于是,由(i)可知

以下同证法一。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网