题目内容
(本小题满分14分)
在数列中,,且对任意.,,成等差数列,其公差为。
(Ⅰ)若=,证明,,成等比数列()
(Ⅱ)若对任意,,,成等比数列,其公比为。
【解析】本小题主要考查等差数列的定义及通项公式,前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法。满分14分。
(Ⅰ)证明:由题设,可得。
所以
=
=2k(k+1)
由=0,得
于是。
所以成等比数列。
(Ⅱ)证法一:(i)证明:由成等差数列,及成等比数列,得
当≠1时,可知≠1,k
从而
所以是等差数列,公差为1。
(Ⅱ)证明:,,可得,从而=1.由(Ⅰ)有
所以
因此,
以下分两种情况进行讨论:
当n为偶数时,设n=2m()
若m=1,则.
若m≥2,则
+
所以
(2)当n为奇数时,设n=2m+1()
所以从而···
综合(1)(2)可知,对任意,,有
证法二:(i)证明:由题设,可得
所以
由可知。可得,
所以是等差数列,公差为1。
(ii)证明:因为所以。
所以,从而,。于是,由(i)可知所以是公差为1的等差数列。由等差数列的通项公式可得= ,故。
从而。
所以,由,可得
。
于是,由(i)可知
以下同证法一。
练习册系列答案
相关题目