题目内容

15、(1)设A={x|x=2k-1,k∈Z},B={x|x=2k,k∈Z},求CZA及CZ(A∪B)
(2)已知A={x|a-4≤x<a+3},B={x|x<2或x>5},且A∩B=A,求a的取值范围.
分析:(1)A={奇数},B={偶数},A∪B=Z,所以CZA={偶数}=B={x|x=2k,k∈Z};CZ(A∪B)=Φ.
(2)由题设条件得a-4>5或a+3≤2,所以a≤-1或a>9.
解答:解:(1)∵A={x|x=2k-1,k∈Z}={奇数},
B={x|x=2k,k∈Z}={偶数},
∴CZA={偶数}=B={x|x=2k,k∈Z};
A∪B=Z,CZ(A∪B)=Φ.
(2)∵A={x|a-4≤x<a+3},B={x|x<2或x>5},A∩B=A,
∴a-4>5或a+3≤2,
∴a≤-1或a>9.
a的取值范围:a≤-1或a>9.
点评:本题考查交集、并集、补集的混合运算,解题时要认真审题,注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网