题目内容
已知经过点A(-2,0),且以(λ,1+λ)为方向向量的直线l1与经过点B(2,0),且以(1+λ,-3λ)为方向向量的直线l2相交于点P,其中λ∈R.(1)求点P的轨迹C的方程;
(2)是否存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|?若存在,求出m的取值范围;若不存在,请说明理由.
【答案】分析:(1)对λ进行讨论,即可求点P的轨迹C的方程;
(2)假设存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|,求出线段MN的中点M的坐标,利用M在椭圆C的内部,在直线l上,即可求得结论.
解答:解:(1)当λ≠0且λ≠-1时,直线l1:
,直线l2:y=
消参可得
①
当λ=0时,直线l1:x=-2,直线l2:y=0,其交点为(-2,0),适合①;
当λ=-1时,直线l1:y=0,直线l2:x=2,其交点为(2,0),适合①;
∴点P的轨迹C的方程为
;
(2)假设存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M(x1,y1),N(x2,y2),且满足|BM|=|BN|.
令线段MN的中点M(x,y),则BM垂直平分MN
∵
,
,
∴两式相减可得,
=k②
∵BM⊥MN,∴
③
由②③可得
∴M(-1,
)
∵M在椭圆C的内部,故
∴|k|>1
∵M(-1,
)在直线l上,
∴
,
∴|m|=|k+
|≥
,当且仅当|k|=
时取等号
∴存在直线l满足条件,此时m的取值范围为(-∞,-
)∪(
,+∞).
点评:本题考查轨迹方程,考查存在性问题的研究,考查学生分析解决问题的能力,属于中档题.
(2)假设存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|,求出线段MN的中点M的坐标,利用M在椭圆C的内部,在直线l上,即可求得结论.
解答:解:(1)当λ≠0且λ≠-1时,直线l1:


消参可得

当λ=0时,直线l1:x=-2,直线l2:y=0,其交点为(-2,0),适合①;
当λ=-1时,直线l1:y=0,直线l2:x=2,其交点为(2,0),适合①;
∴点P的轨迹C的方程为

(2)假设存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M(x1,y1),N(x2,y2),且满足|BM|=|BN|.
令线段MN的中点M(x,y),则BM垂直平分MN
∵


∴两式相减可得,

∵BM⊥MN,∴

由②③可得

∴M(-1,

∵M在椭圆C的内部,故

∴|k|>1
∵M(-1,

∴

∴|m|=|k+



∴存在直线l满足条件,此时m的取值范围为(-∞,-


点评:本题考查轨迹方程,考查存在性问题的研究,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目