题目内容

数列{an}满足:a1+
1
2
a2+
1
22
a3+…+
1
2n-1
an=6-
2n+3
2n-1

(1)求数列{an}的通项公式;
(2)若数列{cn}满足:cn=an+2,又{bn}是首项为6,公差为1的等差数列,且对任意正整数n,不等式
a
(1+
1
c1
)(1+
1
c2
)(1+
1
c3
)…(1+
1
cn
)
-
1
n-2+bn
≤0
恒成立,求正数a的取值范围.
分析:(1)利用递推式,再写一式,两式相减,即可求数列{an}的通项公式;
(2)确定数列的通项,
a
(1+
1
c1
)(1+
1
c2
)(1+
1
c3
)…(1+
1
cn
)
-
1
n-2+bn
≤0
等价于a≤
4
3
6
5
•…
2n+2
2n+1
2n+3
,确定右边的单调性,求最值,即可得到结论.
解答:解:(1)∵a1+
1
2
a2+
1
22
a3+…+
1
2n-1
an=6-
2n+3
2n-1

∴n≥2时,a1+
1
2
a2+
1
22
a3+…+
1
2n-2
an-1=6-
2n+1
2n-2

∴两式相减可得
1
2n-1
an
=
2n-1
2n-1

∴an=2n-1
n=1时,a1=1,也满足上式,
∴an=2n-1
(2)cn=an+2=2n+1,
∵{bn}是首项为6,公差为1的等差数列,
∴bn=n+5,
a
(1+
1
c1
)(1+
1
c2
)(1+
1
c3
)…(1+
1
cn
)
-
1
n-2+bn
≤0
等价于a≤
4
3
6
5
•…
2n+2
2n+1
2n+3

令f(n)=
4
3
6
5
•…
2n+2
2n+1
2n+3
,则f(n+1)=
4
3
6
5
•…
2n+4
2n+3
2n+5

f(n+1)
f(n)
=
2n+4
(2n+3)(2n+5)
=
4n2+16n+16
4n2+16n+15
>1
∴f(n+1)>f(n)
∴n=1时,f(n)最小,即
4
5
15

∴a≤
4
5
15
点评:本题考查数列递推式,考查数列的通项,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网