题目内容
设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( )
A. | B. | C. | D. |
C
解析试题分析:由得为等腰三角形,底边为因为到直线的距离等于双曲线的实轴长,所以而,因此双曲线的渐近线方程为,选C
考点:双曲线定义,双曲线渐近线
练习册系列答案
相关题目
在中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:
条件 | 方程 |
①周长为10 | |
②面积为10 | |
③中, |
A. 、、 B. 、、
C. 、、 D. 、、
抛物线的焦点坐标为( )
A.(2,0) | B.(1,0) | C.(0,-4) | D.(-2,0) |
已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是( )
A. | B. | C. | D. |
已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,P为双曲线右支上的任意一点.若=8a,则双曲线的离心率的取值范围是( )
A.(1,2] | B.[2,+∞) |
C.(1,3] | D.[3,+∞) |
设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为 ( ).
A.y=x-1或y=-x+1 |
B.y=(x-1)或y=-(x-1) |
C.y=(x-1)或y=-(x-1) |
D.y=(x-1)或y=-(x-1) |
抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是( ).
A. | B. | C.1 | D. |
已知双曲线=1(a>0,b>0)的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( ).
A.5x2-=1 | B.-=1 |
C.-=1 | D.5x2-=1 |