ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãF1£¬F2Ϊ˫ÇúÏßC£ºx2-
=1(b£¾0)µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF2×÷´¹Ö±ÓÚxÖáµÄÖ±Ïߣ¬ÔÚxÖáÉÏ·½½»Ë«ÇúÏßÓÚµãM£¬ÇÒ¡ÏMF1F2=300£¬Ô²OµÄ·½³ÌΪx2+y2=b2£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôË«ÇúÏßCÉϵĵ㵽Á½Ìõ½¥½üÏߵľàÀë·Ö±ðΪd1£¬d2£¬Çód1•d2µÄÖµ£»
£¨3£©¹ýÔ²OÉÏÈÎÒâÒ»µãP£¨x0£¬y0£©×÷ÇÐÏßl½»Ë«ÇúÏßCÓÚA£¬BÁ½¸ö²»Í¬µã£¬Çó
•
µÄÖµ£®
y2 |
b2 |
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôË«ÇúÏßCÉϵĵ㵽Á½Ìõ½¥½üÏߵľàÀë·Ö±ðΪd1£¬d2£¬Çód1•d2µÄÖµ£»
£¨3£©¹ýÔ²OÉÏÈÎÒâÒ»µãP£¨x0£¬y0£©×÷ÇÐÏßl½»Ë«ÇúÏßCÓÚA£¬BÁ½¸ö²»Í¬µã£¬Çó
OA |
OB |
·ÖÎö£º£¨1£©ÉèF2£¬MµÄ×ø±ê£¬ÀûÓõãMÔÚË«ÇúÏßCÉÏ£¬¡ÏMF1F2=30¡ã£¬¿ÉµÃ|MF1|-|MF2|=b2=2£¬ÀûÓÃË«ÇúÏߵĶ¨Ò壬¿ÉµÃË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÏÈÈ·¶¨Á½Ìõ½¥½üÏß·½³Ì£¬ÉèË«ÇúÏßCÉϵĵãQ£¨x0£¬y0£©£¬Çó³öµãQµ½Á½Ìõ½¥½üÏߵľàÀ룬½áºÏQ£¨x0£¬y0£©ÔÚË«ÇúÏßCÉÏ£¬¼´¿ÉÇód1•d2µÄÖµ£»
£¨3£©½âÒ»£ºÀûÓÃÔ²µÄ²ÎÊý·½³ÌÉèPµÄ×ø±ê£¬Çó³öÇÐÏßlµÄ·½³Ì´úÈëË«ÇúÏߣ¬Á½±ß³ýÒÔx2£¬ÔÙÀûÓÃΤ´ï¶¨Àí£¬¼´¿ÉµÃµ½½áÂÛ£»
½â¶þ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÐÏßlµÄ·½³ÌΪ£ºx0x+y0y=2´úÈëË«ÇúÏßCÖУ¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý£¬¿ÉµÃ½áÂÛ£®
£¨2£©ÏÈÈ·¶¨Á½Ìõ½¥½üÏß·½³Ì£¬ÉèË«ÇúÏßCÉϵĵãQ£¨x0£¬y0£©£¬Çó³öµãQµ½Á½Ìõ½¥½üÏߵľàÀ룬½áºÏQ£¨x0£¬y0£©ÔÚË«ÇúÏßCÉÏ£¬¼´¿ÉÇód1•d2µÄÖµ£»
£¨3£©½âÒ»£ºÀûÓÃÔ²µÄ²ÎÊý·½³ÌÉèPµÄ×ø±ê£¬Çó³öÇÐÏßlµÄ·½³Ì´úÈëË«ÇúÏߣ¬Á½±ß³ýÒÔx2£¬ÔÙÀûÓÃΤ´ï¶¨Àí£¬¼´¿ÉµÃµ½½áÂÛ£»
½â¶þ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÐÏßlµÄ·½³ÌΪ£ºx0x+y0y=2´úÈëË«ÇúÏßCÖУ¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý£¬¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©ÉèF2£¬MµÄ×ø±ê·Ö±ðΪ(
£¬0)£¬(
£¬y0)-------------------£¨1·Ö£©
ÒòΪµãMÔÚË«ÇúÏßCÉÏ£¬ËùÒÔ1+b2-
=1£¬¼´y0=¡Àb2£¬ËùÒÔ|MF2|=b2------------£¨2·Ö£©
ÔÚRt¡÷MF2F1ÖУ¬¡ÏMF1F2=30¡ã£¬|MF2|=b2£¬ËùÒÔ|MF1|=2b2------------£¨3·Ö£©
ÓÉË«ÇúÏߵĶ¨Òå¿ÉÖª£º|MF1|-|MF2|=b2=2
¹ÊË«ÇúÏßCµÄ·½³ÌΪ£ºx2-
=1-------------------£¨4·Ö£©
£¨2£©ÓÉÌõ¼þ¿ÉÖª£ºÁ½Ìõ½¥½üÏß·Ö±ðΪl1£º
x-y=0£»l2£º
x+y=0-------------------£¨5·Ö£©
ÉèË«ÇúÏßCÉϵĵãQ£¨x0£¬y0£©£¬
ÔòµãQµ½Á½Ìõ½¥½üÏߵľàÀë·Ö±ðΪd1=
£¬d2=
-------------------£¨7·Ö£©
ËùÒÔd1•d2=
•
=
-------------------£¨8·Ö£©
ÒòΪQ£¨x0£¬y0£©ÔÚË«ÇúÏßC£ºx2-
=1ÉÏ£¬ËùÒÔ2x02-y02=2-------------------£¨9·Ö£©
¹Êd1•d2=
=
-------------------£¨10·Ö£©
£¨3£©½âÒ»£ºÒòΪP£¨x0£¬y0£©ÎªÔ²O£ºx2+y2=2ÉÏÈÎÒâÒ»µã£¬Éèx0=
cos¦Á£¬y0=
sin¦Á
ËùÒÔÇÐÏßlµÄ·½³ÌΪ£ºxcos¦Á+ysin¦Á=
-------------------£¨12·Ö£©
´úÈëË«ÇúÏßC£º2x2-y2=2=£¨xcos¦Á+ysin¦Á£©2
Á½±ß³ýÒÔx2£¬µÃ(1+sin2¦Á)(
)2+2sin¦Ácos¦Á(
)+cos2¦Á-2=0-------------------£¨13·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò
£¬
ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù
ÓÉΤ´ï¶¨ÀíÖª£º
=
=-1£¬¼´x1x2+y1y2=0-------------------£¨15·Ö£©
ËùÒÔ
•
=x1x2+y1y2=0-------------------£¨16·Ö£©
½â¶þ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÐÏßlµÄ·½³ÌΪ£ºx0x+y0y=2-------------------£¨12·Ö£©
¢Ùµ±y0¡Ù0ʱ£¬ÇÐÏßlµÄ·½³Ì´úÈëË«ÇúÏßCÖУ¬»¯¼òµÃ£º(2y02-x02)x2+4x0x-(2y02+4)=0
ËùÒÔ£ºx1+x2=-
£¬x1x2=-
-------------------£¨13·Ö£©
ÓÖy1y2=
•
=
[4-2x0(x1+x2)+x02x1x2]=
ËùÒÔ
•
=x1x2+y1y2=-
+
=
=0-----------£¨15·Ö£©
¢Úµ±y0=0ʱ£¬Ò×ÖªÉÏÊö½áÂÛÒ²³ÉÁ¢£®
ËùÒÔ
•
=x1x2+y1y2=0-------------------£¨16·Ö£©
1+b2 |
1+b2 |
ÒòΪµãMÔÚË«ÇúÏßCÉÏ£¬ËùÒÔ1+b2-
y02 |
b2 |
ÔÚRt¡÷MF2F1ÖУ¬¡ÏMF1F2=30¡ã£¬|MF2|=b2£¬ËùÒÔ|MF1|=2b2------------£¨3·Ö£©
ÓÉË«ÇúÏߵĶ¨Òå¿ÉÖª£º|MF1|-|MF2|=b2=2
¹ÊË«ÇúÏßCµÄ·½³ÌΪ£ºx2-
y2 |
2 |
£¨2£©ÓÉÌõ¼þ¿ÉÖª£ºÁ½Ìõ½¥½üÏß·Ö±ðΪl1£º
2 |
2 |
ÉèË«ÇúÏßCÉϵĵãQ£¨x0£¬y0£©£¬
ÔòµãQµ½Á½Ìõ½¥½üÏߵľàÀë·Ö±ðΪd1=
|
| ||
|
|
| ||
|
ËùÒÔd1•d2=
|
| ||
|
|
| ||
|
|2x02-y02| |
3 |
ÒòΪQ£¨x0£¬y0£©ÔÚË«ÇúÏßC£ºx2-
y2 |
2 |
¹Êd1•d2=
|2x02-y02| |
3 |
2 |
3 |
£¨3£©½âÒ»£ºÒòΪP£¨x0£¬y0£©ÎªÔ²O£ºx2+y2=2ÉÏÈÎÒâÒ»µã£¬Éèx0=
2 |
2 |
ËùÒÔÇÐÏßlµÄ·½³ÌΪ£ºxcos¦Á+ysin¦Á=
2 |
´úÈëË«ÇúÏßC£º2x2-y2=2=£¨xcos¦Á+ysin¦Á£©2
Á½±ß³ýÒÔx2£¬µÃ(1+sin2¦Á)(
y |
x |
y |
x |
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò
y1 |
x1 |
y2 |
x2 |
ÓÉΤ´ï¶¨ÀíÖª£º
y1y2 |
x1x2 |
cos2¦Á-2 |
sin2¦Á+1 |
ËùÒÔ
OA |
OB |
½â¶þ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÐÏßlµÄ·½³ÌΪ£ºx0x+y0y=2-------------------£¨12·Ö£©
¢Ùµ±y0¡Ù0ʱ£¬ÇÐÏßlµÄ·½³Ì´úÈëË«ÇúÏßCÖУ¬»¯¼òµÃ£º(2y02-x02)x2+4x0x-(2y02+4)=0
ËùÒÔ£ºx1+x2=-
4x0 |
(2y02-x02) |
(2y02+4) |
(2y02-x02) |
ÓÖy1y2=
(2-x0x1) |
y0 |
(2-x0x2) |
y0 |
1 |
y02 |
8-2x02 |
2y02-x02 |
ËùÒÔ
OA |
OB |
(2y02+4) |
(2y02-x02) |
8-2x02 |
2y02-x02 |
4-2(x02+y02) |
2y02-x02 |
¢Úµ±y0=0ʱ£¬Ò×ÖªÉÏÊö½áÂÛÒ²³ÉÁ¢£®
ËùÒÔ
OA |
OB |
µãÆÀ£º±¾Ì⿼²éË«ÇúÏߵıê×¼·½³Ì£¬¿¼²éË«ÇúÏߵļ¸ºÎÐÔÖÊ£¬¿¼²éÔ²µÄÇÐÏß·½³Ì£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓ㬿¼²éÏòÁ¿ÖªÊ¶£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿