题目内容

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ)

【解析】试题分析:(Ⅰ)依题意,根据公式求得的值,即可得到回归直线方程;

(Ⅱ)由(Ⅰ)得当时,,即可根据题意作出判断结论;

(Ⅲ)设3月份选取的4位驾驶的编号分别为:,从4月份选取的2位驾驶员的编号分别为,列出基本事件的总体,用古典概型及概率计算公式,即可求解概率.

试题解析:

(Ⅰ)依题意

关于的线性回归方程为:.

(Ⅱ)由(Ⅰ)得,当时,.

,故6月份该十字路口“礼让斑马线”情况达到“理想状态”.

(Ⅲ)设3月份选取的4位驾驶的编号分别为:,从4月份选取的2位驾驶员的编号分别为,从这6人中任抽两人包含以下基本事件:共15个基本事件,其中两个恰好来自同一月份的包含7个基本事件,

∴所求概率.

练习册系列答案
相关题目

【题目】我国南北朝数学家何承天发明的调日法是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数的不足近似值和过剩近似值分别为,则的更为精确的近似值.

我们知道,我国早在《周髀算经》中就有周三径一的古率记载,《隋书律历志》有如下记载:南徐州从事史祖冲之更开密法,以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,肭数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二,这一记录指出了祖冲之关于圆周率的两大贡献:其一是求得圆周率;其二是得到的两个近似分数即:约率为22/7,密率为355/113,他算出的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界纪录一千多年,他对的研究真可谓运筹于帷幄之中,决胜于千年之外,祖冲之是我国古代最有影响的数学家之一,莫斯科大学走廊里有其塑像,195910月,原苏联通过月球3”号卫星首次拍下月球背面照片后,就以祖冲之命名一个环形山,其月面坐标是:东经148度,北纬17.

纵横古今,关于值的研究,经历了古代试验法时期、几何法时期、分析法时期、蒲丰或然性试验方法时期、计算机时期,己知,试以上述的不足近似值和过剩近似值为依据,那么使用两次调日法后可得的近似分数为____________

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网