题目内容

如图四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上,O为AC与BD的交点.
(1)求证:平面AEC⊥平面PDB;
(2)当E为PB中点时,求证:OE平面PDA,OE平面PDC.
(3)当PD=
2
AB
且E为PB的中点时,求AE与平面PBC所成的角的大小.
(1)∵四边形ABCD是正方形,
∴AC⊥BD,
∵PD⊥底面ABCD,
∴PD⊥AC,BD∩PD=D
∴AC⊥平面PDB,
又∵AC?平面AEC
∴平面平面AEC⊥平面PDB.
(2)∵四边形ABCD是正方形,
∴OB=OD,在PBD中,
又∵PE=BE
∴OEPD,
又∵OE?平面PAD,PD?平面PAD
∴OE平面PDA,同理可证OE平面PDC.
(3)∵PD⊥底面ABCD,
∴PD⊥DA,PD⊥DC,
又∵DA⊥DC
所以,可以D为坐标原点建立如图的空间直角坐标系D-xyz.设AB=1.则
D(0,0,0),A(1,0,0),C(0,1,0),B(1,1,0),P(0,0,
2
),E(
1
2
1
2
2
2
)

从而,
AE
=(-
1
2
1
2
2
2
)
CB
=(1,0,0)
PC
=(0,-1,
2
)

设平面PBC的一个法向量为
n
=(x,y,z).
n
CB
=0
n
PC
=0
x=0
-y+
2
z=0

令z=1,得
n
(0,
2
,1)

设AE与平面PBC所成的角θ,则sinθ=
|
n
AE
|
|
n
||
AE
|

sinθ=
|
2
2
+
2
2
|
3
×
1
4
+
1
4
+
2
4
=
2
3
=
6
3

AE与平面PBC所成的角的正弦值为
6
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网