题目内容
已知cos(![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_ST/1.png)
【答案】分析:根据θ为锐角,得到θ+
的范围,然后由cos(θ+
)的值,利用同角三角函数间的基本关系求出sin(θ+
)的值,然后把所求的式子中的θ拆项为(
)-
,利用两角差的正弦函数公式及特殊角的三角函数值化简后,将sin(θ+
)和cos(θ+
)的值代入即可求出值.
解答:解:由θ∈(0,
),得到θ+
∈(
,
),又cos(
)=
,
所以sin(
)=
=
,
则sinθ=sin[(
)-
]
=sin(
)cos
-cos(
)sin![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/21.png)
=
×
-
×![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/25.png)
=
.
点评:此题考查学生灵活运用同角三角函数间的基本关系及两角差的正弦函数公式化简求值,是一道基础题.本题的关键是将所求式子中的角θ拆项为(
)-
.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/6.png)
解答:解:由θ∈(0,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/12.png)
所以sin(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/15.png)
则sinθ=sin[(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/17.png)
=sin(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/21.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/25.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/26.png)
点评:此题考查学生灵活运用同角三角函数间的基本关系及两角差的正弦函数公式化简求值,是一道基础题.本题的关键是将所求式子中的角θ拆项为(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224259217378186/SYS201311012242592173781016_DA/28.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知cos(
+α)=
,且-π<α<-
,则cos(
-α)等于( )
5π |
12 |
1 |
3 |
π |
2 |
π |
12 |
A、.
| ||||
B、
| ||||
C、-
| ||||
D、-
|