题目内容

已知cos(
π
4
+x)=
3
5
,且0<x<
π
4
,求
sin(
π
4
-x)
cos(2x+5π)
+sin(2x-
2
)
的值.
分析:先根据同角三角函数之间的关系求出sin(x+
π
4
);再借助于诱导公式对所求问题进行化简整理到用sin(x+
π
4
)以及cos(
π
4
+x)=
3
5
,表示的形式即可得到答案.
解答:解:因为cos(
π
4
+x)=
3
5
,且0<x<
π
4

所以:sin(x+
π
4
)=
4
5

所以:
sin(
π
4
-x)
cos(2x+5π)
+sin(2x-
2
)

=
cos(x+
π
4
)
-cos2x
+sin(2x+
π
2

=-
cos(x+
π
4
)
sin(2x+
π
2
)
+sin(2x+
π
2

=-
cos(x+
π
4
)
2sin(x+
π
4
)cos(x+
π
4
)
+2sin(x+
π
4
)cos(x+
π
4

=-
3
5
3
5
×
4
5
+2×
3
5
×
4
5

=-
5
8
+
24
25

=
67
200
点评:本题主要考查三角函数的恒等变换及化简求值.解决问题的关键在于对公式的熟练掌握以及灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网