ÌâÄ¿ÄÚÈÝ
£¨2013•ÉÇβ¶þÄ££©ÉèµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖªan+1=2Sn+2(n¡ÊN*)£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚanÓëan+1Ö®¼ä²åÈën¸öÊý£¬Ê¹Õân+2¸öÊý×é³É¹«²îΪdnµÄµÈ²îÊýÁУ¨È磺ÔÚa1Óëa2Ö®¼ä²åÈë1¸öÊý¹¹³ÉµÚÒ»¸öµÈ²îÊýÁУ¬Æ乫²îΪd1£»ÔÚa2Óëa3Ö®¼ä²åÈë2¸öÊý¹¹³ÉµÚ¶þ¸öµÈ²îÊýÁУ¬Æ乫²îΪd2£¬¡ÒÔ´ËÀàÍÆ£©£¬ÉèµÚn¸öµÈ²îÊýÁеĺÍÊÇAn£®ÊÇ·ñ´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÕâ¸ö¶àÏîʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¶ÔÓÚ£¨2£©ÖеÄÊýÁÐd1£¬d2£¬d3£¬¡£¬dn£¬¡£¬Õâ¸öÊýÁÐÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏîdm£¬dk£¬dp£¨ÆäÖÐÕýÕûÊým£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ¬Èô´æÔÚ£¬Çó³öÕâÑùµÄÈýÏÈô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚanÓëan+1Ö®¼ä²åÈën¸öÊý£¬Ê¹Õân+2¸öÊý×é³É¹«²îΪdnµÄµÈ²îÊýÁУ¨È磺ÔÚa1Óëa2Ö®¼ä²åÈë1¸öÊý¹¹³ÉµÚÒ»¸öµÈ²îÊýÁУ¬Æ乫²îΪd1£»ÔÚa2Óëa3Ö®¼ä²åÈë2¸öÊý¹¹³ÉµÚ¶þ¸öµÈ²îÊýÁУ¬Æ乫²îΪd2£¬¡ÒÔ´ËÀàÍÆ£©£¬ÉèµÚn¸öµÈ²îÊýÁеĺÍÊÇAn£®ÊÇ·ñ´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÕâ¸ö¶àÏîʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¶ÔÓÚ£¨2£©ÖеÄÊýÁÐd1£¬d2£¬d3£¬¡£¬dn£¬¡£¬Õâ¸öÊýÁÐÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏîdm£¬dk£¬dp£¨ÆäÖÐÕýÕûÊým£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ¬Èô´æÔÚ£¬Çó³öÕâÑùµÄÈýÏÈô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©n¡Ý2ʱ£¬ÓÉan+1=2Sn+2£¬ÔÙдһʽ£¬Á½Ê½Ïà¼õ£¬¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÏÈÇóµÃdn£¬´Ó¶ø¿ÉµÃµÚn¸öµÈ²îÊýÁеĺÍAn£¬Óɴ˿ɵýáÂÛ£»
£¨3£©ÀûÓ÷´Ö¤·¨£®¼ÙÉèÔÚÊýÁÐ{dn}ÖдæÔÚdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ¬Óɴ˿ɵÃm=k=pÕâÓëÌâÉèì¶Ü£®
£¨2£©ÏÈÇóµÃdn£¬´Ó¶ø¿ÉµÃµÚn¸öµÈ²îÊýÁеĺÍAn£¬Óɴ˿ɵýáÂÛ£»
£¨3£©ÀûÓ÷´Ö¤·¨£®¼ÙÉèÔÚÊýÁÐ{dn}ÖдæÔÚdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ¬Óɴ˿ɵÃm=k=pÕâÓëÌâÉèì¶Ü£®
½â´ð£º½â£º£¨1£©n¡Ý2ʱ£¬ÓÉan+1=2Sn+2£¬¢Ù£»
µÃan=2Sn-1+2£¬¢Ú£»
Á½Ê½Ïà¼õ¿ÉµÃ£ºan+1-an=2an£¬¡àan+1=3an£¬¼´ÊýÁÐ{an}µÄ¹«±ÈΪ3
¡ßn=1ʱ£¬a2=2S1+2£¬¡à3a1=2a1+2£¬½âµÃa1=2£¬
¡àan=2¡Á3n-1£»
£¨2£©ÓÉ£¨1£©Öªan=2¡Á3n-1£¬an+1=2¡Á3n£¬
ÒòΪan+1=an+£¨n+1£©dn£¬ËùÒÔdn=
µÚn¸öµÈ²îÊýÁеĺÍÊÇAn=£¨n+2£©an+
¡Á
=4£¨n+2£©¡Á3n-1=£¨n+2£©£¨n+1£©dn£¬
¡à´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©=£¨n+2£©£¨n+1£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£»
£¨3£©¼ÙÉèÔÚÊýÁÐ{dn}ÖдæÔÚdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁÐ
Ôòdk2=dmdp£¬¼´£¨
£©2=
¡Á
ÒòΪm£¬k£¬p³ÉµÈ²îÊýÁУ¬ËùÒÔm+p=2k¢Ù
ÉÏʽ¿ÉÒÔ»¯¼òΪk2=mp¢Ú
Óɢ٢ڿɵÃm=k=pÕâÓëÌâÉèì¶Ü
ËùÒÔÔÚÊýÁÐ{dn}Öв»´æÔÚÈýÏîdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ®
µÃan=2Sn-1+2£¬¢Ú£»
Á½Ê½Ïà¼õ¿ÉµÃ£ºan+1-an=2an£¬¡àan+1=3an£¬¼´ÊýÁÐ{an}µÄ¹«±ÈΪ3
¡ßn=1ʱ£¬a2=2S1+2£¬¡à3a1=2a1+2£¬½âµÃa1=2£¬
¡àan=2¡Á3n-1£»
£¨2£©ÓÉ£¨1£©Öªan=2¡Á3n-1£¬an+1=2¡Á3n£¬
ÒòΪan+1=an+£¨n+1£©dn£¬ËùÒÔdn=
4¡Á3n-1 |
n+1 |
µÚn¸öµÈ²îÊýÁеĺÍÊÇAn=£¨n+2£©an+
(n+2)(n+1) |
2 |
4¡Á3n-1 |
n+1 |
¡à´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©=£¨n+2£©£¨n+1£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£»
£¨3£©¼ÙÉèÔÚÊýÁÐ{dn}ÖдæÔÚdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁÐ
Ôòdk2=dmdp£¬¼´£¨
4¡Á3k-1 |
k+1 |
4¡Á3m-1 |
m+1 |
4¡Á3p-1 |
p+1 |
ÒòΪm£¬k£¬p³ÉµÈ²îÊýÁУ¬ËùÒÔm+p=2k¢Ù
ÉÏʽ¿ÉÒÔ»¯¼òΪk2=mp¢Ú
Óɢ٢ڿɵÃm=k=pÕâÓëÌâÉèì¶Ü
ËùÒÔÔÚÊýÁÐ{dn}Öв»´æÔÚÈýÏîdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ®
µãÆÀ£º±¾Ì⿼²éÊýÁÐͨÏʽµÄÇó½â£¬¿¼²éµÈ²îÊýÁеÄÇóºÍ£¬¿¼²é·´Ö¤·¨Ë¼Ï룬ȷ¶¨ÊýÁеÄͨÏÀûÓÃÊýÁеÄÇóºÍ¹«Ê½Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿