题目内容

(2012•河南模拟)给出以下四个命题:
①已知命题p:?x∈R,tanx=2;命题q:?x∈R,x2-x+1≥0,则命题p∧q是真命题;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是x+y-1=0;
③函数f(x)=2x+2x-3在定义域内有且只有一个零点;
④若直线xsin α+ycos α+l=0和直线xcosα-
1
2
y-1=0
垂直,则角α=kπ+
π
2
或α=2kπ+
π
6
(k∈Z)

其中正确命题的序号为
①③
①③
.(把你认为正确的命题序号都填上)
分析:由正切的定义和二次函数零点的结论,可得①是真命题;由直线在坐标轴上的截距定义,可得②是假命题;根据函数的单调性和零点存在性定理,可得③是真命题;根据两条直线垂直的充要条件,结合三角函数图象与性质,可得④是假命题.
解答:解:对于①,根据正切的定义知命题p是真命题,
而命题q:?x∈R,x2-x+1≥0,因为△=(-1)2-4×1×1=-3<0,
所以抛物线y=x2-x+1开口向上并且与x轴无公共点,故p也是真命题.
因此命题p∧q是真命题,①正确;
对于②,过点(-1,2)且在x轴和y轴上的截距相等的直线方程除了x+y-1=0还有y=-2x,故②不正确;
对于③,f(x)=2x+2x-3在R上是增函数,而且f(0)=-2<0,f(1)=1>0
所以函数f(x)=2x+2x-3在定义域内有且只有一个零点,故③是真命题;
对于④,直线xsin α+ycos α+l=0和直线xcosα-
1
2
y-1=0
垂直,则sinαcosα-
1
2
cosα=0,
可得sinα=
1
2
或cosα=0,所以α=2kπ+
π
6
或α=2kπ+
6
或α=kπ+
π
2

由此可得④不正确.
故答案为:①③
点评:本题以命题真假的判断为载体,考查了二次函数的图象与性质、函数的单调性与零点存在性定理、两条直线位置关系和简单的三角方程等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网