题目内容

设定义在R上的函数有5个不同实数解,则实数a的取值范围是(   )
A.B.
C.D.(0,1)
A
∵题中原方程f2(x)+af(x)+b=0有且只有5个不同实数解,
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:

由图可知,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+af(x)+b=0中,
有:1+a+b=0,b=-1-a,
且当f(x)=k,k>0且k≠1时,关于x的方程f2(x)+af(x)+b=0有5个不同实数解,
∴k2+ak-1-a=0,
a=-1-k,∵k>0且k≠1,
∴a∈(-∞,-2)∪(-2,-1)
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网