题目内容
在△ABC中,a、b、c分别为角A、B、C所对的边,且c=-3bcosA,tanC=.(1)求tanB的值;(2)若c=2,求△ABC的面积.
(1)(2)
解析
若的图像与直线相切,并且切点横坐标依次成公差为的等差数列.(1)求和的值; (2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数 图象的一个对称中心,且a=4,求ABC面积的最大值.
如图,在中,,,,点是的中点, 求:(1)边的长;(2)的值和中线的长
在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sinBsinC的值.
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;(3)是否存在v,使得小艇以v海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.
在锐角△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,cosB),n=(sinB,-),且m⊥n.(1)求角B的大小.(2)若△ABC的面积为,a=2,求b的值.
如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.
在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.求角A的大小.
在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin Asin C的值.