ÌâÄ¿ÄÚÈÝ
±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×÷£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£®×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«Ñ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®£¨1£©Ñ¡ÐÞ4Ò»2£º¾ØÕóÓë±ä»»
Éè¾ØÕóMËù¶ÔÓ¦µÄ±ä»»ÊÇ°Ñ×ø±êƽÃæÉϵĵãµÄºá×ø±êÉ쳤µ½2±¶£¬×Ý×ø±êÉ쳤µ½3±¶µÄÉìËõ±ä»»£®
£¨¢ñ£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨¢ò£©ÇóÄæ¾ØÕóM-1ÒÔ¼°ÍÖÔ²ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³Ì£®
£¨2£©Ñ¡ÐÞ4Ò»4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±Ïߣ¨tΪ²ÎÊý£©£¬£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©µ±Ê±£¬ÇóC1ÓëC2µÄ½»µã×ø±ê£»
£¨¢ò£©¹ý×ø±êÔµãO×öC1µÄ´¹Ïߣ¬´¹×ãΪA£¬PΪOAÖе㣬µ±¦Á±ä»¯Ê±£¬ÇóPµãµÄ¹ì¼£µÄ²ÎÊý·½³Ì£®
£¨3£©Ñ¡ÐÞ4Ò»5£º²»µÈʽѡ½²
ÒÑÖªa£¬b£¬c¾ùΪÕýʵÊý£¬ÇÒa+b+c=1£®ÇóµÄ×î´óÖµ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©£¨¢ñ£©ÏÈÇó³ö¾ØÕóM£¬È»ºóÀûÓÃÌØÕ÷¶àÏîʽ½¨Á¢·½³ÌÇó³öËüµÄÌØÕ÷Öµ£¬×îºó·Ö±ðÇó³öÌØÕ÷ÖµËù¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨¢ò£©ÏÈÇó³ö¾ØÕóMµÄÄæ¾ØÕó£¬È»ºóÀûÓõãÔÚ¾ØÕóM-1µÄ×÷ÓÃϵĵãµÄ×ø±ê£¬»¯¼ò´úÈëÍÖÔ²·½³ÌÇó³öеÄÇúÏß·½³Ì£®
£¨2£©£¨¢ñ£©ÏÈд³öC1µÄÆÕͨ·½³ÌºÍC2µÄÆÕͨ·½³ÌΪx2+y2=1£®ÁªÁ¢·½³Ì×é¼´¿É½âµÃC1ÓëC2µÄ½»µã£»
£¨¢ò£©C1µÄÆÕͨ·½³ÌΪxsin¦Á-ycos¦Á-sin¦Á=0£®Aµã×ø±êΪ£¨sin2¦Á£¬-cos¦Ásin¦Á£©£¬´Ó¶øµÃ³öµ±¦Á±ä»¯Ê±£¬Pµã¹ì¼£µÄ²ÎÊý·½³Ì¼´¿É£®
£¨3£©¸ù¾Ý¿ÂÎ÷²»µÈʽ•£¨4a+1+4b+1+4c+1£©Ö±½ÓÇó½â¼´¿É£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌõ¼þµÃ¾ØÕóM=£¬
ËüµÄÌØÕ÷ֵΪ2ºÍ3£¬¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿Îª¼°£»£¨4·Ö£©
£¨¢ò£©£¬ÍÖÔ²ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³ÌΪx2+y2=1£®£¨7·Ö£©
£¨2£©£¨¢ñ£©µ±Ê±£¬C1µÄÆÕͨ·½³ÌΪ£¬
C2µÄÆÕͨ·½³ÌΪx2+y2=1£®ÁªÁ¢·½³Ì×飬
½âµÃC1ÓëC2µÄ½»µãΪ£¨1£¬0£©£¬£®£¨4·Ö£©
£¨¢ò£©C1µÄÆÕͨ·½³ÌΪxsin¦Á-ycos¦Á-sin¦Á=0£®Aµã×ø±êΪ£¨sin2¦Á£¬-cos¦Ásin¦Á£©£¬
¹Êµ±¦Á±ä»¯Ê±£¬Pµã¹ì¼£µÄ²ÎÊý·½³ÌΪ£º£¨¦ÁΪ²ÎÊý£©£¨7·Ö£©
£¨3£©ÓÉ¿ÂÎ÷²»µÈʽµÃ
•£¨4a+1+4b+1+4c+1£©
=3[4£¨a+b+c£©+3]=2£¨15·Ö£©
µ±ÇÒ½öµ±a=b=c=ʱµÈºÅ³ÉÁ¢
¹ÊµÄ×î´óֵΪ£®£¨7·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÀ´ÁËÄæ±ä»»ÓëÄæ¾ØÕó£¬ÒÔ¼°Ô²µÄ²ÎÊý·½³ÌºÍÖ±ÏߵIJÎÊý·½³Ì£¬ÒÔ¼°²»µÈʽµÄÖ¤Ã÷µÈ»ù´¡ÖªÊ¶£¬ÊÇÒ»µÀ×ÛºÏÌ⣬ÊôÓÚÖеµÌ⣮
£¨¢ò£©ÏÈÇó³ö¾ØÕóMµÄÄæ¾ØÕó£¬È»ºóÀûÓõãÔÚ¾ØÕóM-1µÄ×÷ÓÃϵĵãµÄ×ø±ê£¬»¯¼ò´úÈëÍÖÔ²·½³ÌÇó³öеÄÇúÏß·½³Ì£®
£¨2£©£¨¢ñ£©ÏÈд³öC1µÄÆÕͨ·½³ÌºÍC2µÄÆÕͨ·½³ÌΪx2+y2=1£®ÁªÁ¢·½³Ì×é¼´¿É½âµÃC1ÓëC2µÄ½»µã£»
£¨¢ò£©C1µÄÆÕͨ·½³ÌΪxsin¦Á-ycos¦Á-sin¦Á=0£®Aµã×ø±êΪ£¨sin2¦Á£¬-cos¦Ásin¦Á£©£¬´Ó¶øµÃ³öµ±¦Á±ä»¯Ê±£¬Pµã¹ì¼£µÄ²ÎÊý·½³Ì¼´¿É£®
£¨3£©¸ù¾Ý¿ÂÎ÷²»µÈʽ•£¨4a+1+4b+1+4c+1£©Ö±½ÓÇó½â¼´¿É£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌõ¼þµÃ¾ØÕóM=£¬
ËüµÄÌØÕ÷ֵΪ2ºÍ3£¬¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿Îª¼°£»£¨4·Ö£©
£¨¢ò£©£¬ÍÖÔ²ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³ÌΪx2+y2=1£®£¨7·Ö£©
£¨2£©£¨¢ñ£©µ±Ê±£¬C1µÄÆÕͨ·½³ÌΪ£¬
C2µÄÆÕͨ·½³ÌΪx2+y2=1£®ÁªÁ¢·½³Ì×飬
½âµÃC1ÓëC2µÄ½»µãΪ£¨1£¬0£©£¬£®£¨4·Ö£©
£¨¢ò£©C1µÄÆÕͨ·½³ÌΪxsin¦Á-ycos¦Á-sin¦Á=0£®Aµã×ø±êΪ£¨sin2¦Á£¬-cos¦Ásin¦Á£©£¬
¹Êµ±¦Á±ä»¯Ê±£¬Pµã¹ì¼£µÄ²ÎÊý·½³ÌΪ£º£¨¦ÁΪ²ÎÊý£©£¨7·Ö£©
£¨3£©ÓÉ¿ÂÎ÷²»µÈʽµÃ
•£¨4a+1+4b+1+4c+1£©
=3[4£¨a+b+c£©+3]=2£¨15·Ö£©
µ±ÇÒ½öµ±a=b=c=ʱµÈºÅ³ÉÁ¢
¹ÊµÄ×î´óֵΪ£®£¨7·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÀ´ÁËÄæ±ä»»ÓëÄæ¾ØÕó£¬ÒÔ¼°Ô²µÄ²ÎÊý·½³ÌºÍÖ±ÏߵIJÎÊý·½³Ì£¬ÒÔ¼°²»µÈʽµÄÖ¤Ã÷µÈ»ù´¡ÖªÊ¶£¬ÊÇÒ»µÀ×ÛºÏÌ⣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿