题目内容

椭圆(a>b>0)的两焦点分别为F1、F2,以F1F2为边作正三角形,若正三角形的第三个顶点恰好是椭圆短轴的一个端点,则椭圆的离心率为( )
A.
B.
C.
D.
【答案】分析:根据题意可得:正三角形的边长为2c,所以b=c,可得,进而根据a与c的关系求出离心率.
解答:解:因为以F1F2为边作正三角形,
所以正三角形的边长为2c,
又因为正三角形的第三个顶点恰好是椭圆短轴的一个端点,
所以b=c,
所以
所以e=
故选A.
点评:本题考查椭圆的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网