题目内容
14.已知顶点在原点,对称轴为x轴的抛物线,焦点F在直线2x+3y-4=0上.求抛物线的方程.分析 先根据焦点在直线2x+3y-4=0上求得焦点F的坐标,再根据抛物线以x轴对称式设出抛物线的标准方程,求得p,即可得到抛物线的方程.
解答 解:∵焦点在直线2x+3y-4=0上,且抛物线的顶点在原点,对称轴是x轴,
∴焦点F的坐标为(2,0),
设方程为y2=2px(p>0),则$\frac{p}{2}$=2,
求得p=4,
∴则此抛物线方程为y2=8x.
点评 本题主要考查了抛物线的简单性质和抛物线的标准方程.解答的关键在于考生对圆锥曲线的基础知识的把握.
练习册系列答案
相关题目
5.Rt△ABC的角A,B,C所对的边分别是a,b,c(其中c为斜边),分别以a,b,c边所在的直线为旋转轴,将△ABC旋转一周得到的几何体的体积分别是V1,V2,V3,则( )
| A. | V1+V2=V3 | B. | $\frac{1}{V_1}+\frac{1}{V_2}=\frac{1}{V_3}$ | ||
| C. | $V_1^2+V_2^2=V_3^2$ | D. | $\frac{1}{V_1^2}+\frac{1}{V_2^2}=\frac{1}{V_3^2}$ |
9.设f(x)是定义在R上的增函数,其导函数为f′(x),且满足$\frac{f(x)}{f′(x)}$+x<1,下面不等式正确的是( )
| A. | f(x2)<f(x-1) | B. | (x-1)f(x)<xf(x+1) | C. | f(x)>x-1 | D. | f(x)<0 |
19.椭圆2x2+y2=8的焦点坐标是( )
| A. | (±2,0) | B. | (0,±2) | C. | (±2$\sqrt{3}$,0) | D. | (0,±2$\sqrt{3}$) |
6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1,F2,过F2的直线与双曲线C的右支相交于P,Q两点,若PQ⊥PF1,且|PF1|=|PQ|,则双曲线的离心率e=( )
| A. | $\sqrt{2}$+1 | B. | 2$\sqrt{2}$+1 | C. | $\sqrt{5+2\sqrt{2}}$ | D. | $\sqrt{5-2\sqrt{2}}$ |