题目内容
(本小题满分12分)2010年广东亚运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:
乙系列:
现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I) 若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II) (II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。
甲系列:
动作 | K | D | ||
得分 | 100 | 80 | 40 | 10 |
概率 |
动作 | K | D | ||
得分 | 90 | 50 | 20 | 0 |
概率 |
(I) 若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II) (II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。
【解】(I)若该运动员希望获得该项目的第一名,应选择甲系列.……1分
理由如下:选择甲系列最高得分为100+40=140>118,可能获得第一名;而选择乙系列最高得分为90+20=110<118,不可能获得第一名. ……2分
记“该运动员完成K动作得100分”为事件A,“该运动员完成D动作得40分”为事件B,则P (A)=,P (B)=. 4分
记“该运动员获得第一名”为事件C,依题意得P(C)=P(AB)+==.
该运动员获得第一名的概率为.…………6分
(II)若该运动员选择乙系列,X的可能取值是50,70,90,110
则P (X=50)==, P (X=70)==,P (X=90)==, P (X=110)==.……9分
X的分布列为:
∴=50×+70×+90×+110×=104. ……12分
理由如下:选择甲系列最高得分为100+40=140>118,可能获得第一名;而选择乙系列最高得分为90+20=110<118,不可能获得第一名. ……2分
记“该运动员完成K动作得100分”为事件A,“该运动员完成D动作得40分”为事件B,则P (A)=,P (B)=. 4分
记“该运动员获得第一名”为事件C,依题意得P(C)=P(AB)+==.
该运动员获得第一名的概率为.…………6分
(II)若该运动员选择乙系列,X的可能取值是50,70,90,110
X | 50 | 70 | 90 | 110 |
P |
X的分布列为:
∴=50×+70×+90×+110×=104. ……12分
略
练习册系列答案
相关题目