题目内容

已知命题:若p:|x-1|>a成立 则q:2x2-3x+1>0成立.若原命题为真命题,且其逆命题为假命题.求实数a的取值范围.
分析:解P中的不等式组,我们可得使命题p为真的集合P,解q中的不等式我们可得使命题q为真的集合Q,若要利用所给的两个条件作为A,B构造命题:“若A,则B”,并使得构造的原命题为真命题,而其逆命题为假命题,P?Q即可,根据集合包含的充要条件,构造关于a的不等式,可得答案.
解答:解:由 p:|x-1|>a   
∴x-1<-a或x-1>a,
∴x<-a+1或x>a+1,
∴P=(-∞,-a+1)∪(a+1,+∞)
已知条件q,即2x2-3x+1>0,
∴x<
1
2
或x>1
Q=(-∞,
1
2
)∪(1,+∞)
由原命题为真命题,且其逆命题为假命题
∴P?Q
1-a≤
1
2
1+a≥1

解得a≥
1
2

综上所述,所求实数a的取值范围是[
1
2
,+∞)
点评:本题考查的知识点是四种命题的真假判断,及充要条件的性质,若要利用所给的两个条件作为A,B构造命题:“若A,则B”,并使得构造的原命题为真命题,而其逆命题为假命题,则A为B的充分不必要的条件,可得A?B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网