题目内容
已知函数f(x)=(
)x-log2x,正实数a、b、c成公差为正数的等差数列,且满足f(a)f(b)f(c)<0,若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c中,有可能成立的个数为
1 | 3 |
3
3
.分析:根据函数的单调性,结合数列是等差数列,设出a,b,c的关系,推出a,b,c,d的大小关系,得到选项推出结果.
解答:解:f(x)=(
)x-log2x,是由y=(
)x 和 y=-log2x,
两个函数中,每个函数都是减函数,所以,函数为减函数.
∵正实数a,b,c是公差为正数的等差数列,
∴不妨设0<a<b<c
∵f(a)f(b)f(c)<0
则f(a)<0,f(b)<0,f(c)<0 或者f(a)>0,f(b)>0,f(c)<0
综合以上两种可能,恒有 f(c)<0
所以可能有①d<a;②d<b;④d<c,正确.
故答案为:3.
1 |
3 |
1 |
3 |
两个函数中,每个函数都是减函数,所以,函数为减函数.
∵正实数a,b,c是公差为正数的等差数列,
∴不妨设0<a<b<c
∵f(a)f(b)f(c)<0
则f(a)<0,f(b)<0,f(c)<0 或者f(a)>0,f(b)>0,f(c)<0
综合以上两种可能,恒有 f(c)<0
所以可能有①d<a;②d<b;④d<c,正确.
故答案为:3.
点评:本题考查指数函数与对数函数的基本性质,正确估计函数值与a,b,c的大小关系是解题的关键,考查计算能力,逻辑推理能力.
练习册系列答案
相关题目
已知函数f(x)=
是定义域上的递减函数,则实数a的取值范围是( )
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|