题目内容

已知f(x)=
x
,x≥0
e-x-ex,x<0
若函数y=f(x)-k(x+1)有三个零点,则实数k的取值范围是(  )
分析:由y=f(x)-k(x+1)=0得f(x)=k(x+1),设y=f(x),y=k(x+1),然后作出图象,利用数形结合的思想确定实数k的取值范围.
解答:解:y=f(x)-k(x+1)=0得f(x)=k(x+1),
设y=f(x),y=k(x+1),在同一坐标系中作出函数y=f(x)和y=k(x+1)的图象如图:
因为当x<0时,函数f(x)=e-x-ex单调递减,且f(x)>0.
由图象可以当直线y=k(x+1)与f(x)=
x
相切时,函数y=f(x)-k(x+1)
有两个零点.下面求切线的斜率.由
y=k(x+1)
y=
x
得k2x2+(2k2-1)x+k2=0,
当k=0时,不成立.
由△=0得△=(2k2-1)2-4k2?k2=1-4k2=0,解得k2=
1
4

所以k=
1
2
或k=-
1
2
(不合题意舍去).
所以要使函数y=f(x)-k(x+1)有三个零点,
则0<k
1
2

故选B.
点评:本题综合考查了函数的零点问题,利用数形结合的思想是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网