题目内容

4.已知数列{an},a1=1,an=n+1(n≥2),Tn=$\frac{1}{{a}_{1}{a}_{3}}$+$\frac{1}{{a}_{2}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+2}}$,求证:Tn<$\frac{5}{3}$.

分析 a1=1,an=n+1(n≥2),当n≥2时,$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{(n+1)(n+3)}$=$\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+3})$.利用“裂项求和”即可得出.

解答 证明:∵a1=1,an=n+1(n≥2),
∴当n≥2时,$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{(n+1)(n+3)}$=$\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+3})$.
∴Tn=$\frac{1}{1×4}$+$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{4}-\frac{1}{6})+(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{n}-\frac{1}{n+2})+(\frac{1}{n+1}-\frac{1}{n+3})]$
=$\frac{1}{4}+\frac{1}{2}(\frac{1}{3}+\frac{1}{4}-\frac{1}{n+2}-\frac{1}{n+3})$
<$\frac{1}{4}+\frac{1}{2}(\frac{1}{3}+\frac{1}{4})$=$\frac{13}{24}$$<\frac{5}{3}$.
∴Tn<$\frac{5}{3}$.

点评 本题考查了“裂项求和”方法、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网