题目内容
若椭圆上有个不同的点为右焦点,组成公差的等差数列,则的最大值为( )
A.199 | B.200 | C.99 | D.100 |
B
解析试题分析:椭圆上的点到右焦点最大距离为:a+c=3,到右焦点最小距离是a-c=1,2=(n-1)d,要使,且n最大,有d=,由此能求出n的最大值.
考点:(1)椭圆的定义;(2)等差数列.
练习册系列答案
相关题目
抛物线的焦点坐标为( )
A. | B. | C. | D. |
设是双曲线的两个焦点, 是上一点,若且的最小内角为,则的离心率为( )
A. | B. | C. | D. |
过椭圆+=1(a>b>0)的焦点垂直于x轴的弦长为,则双曲线-=1的离心率e的值是( )
A. | B. |
C. | D. |
双曲线-=1的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r=( )
A. | B.2 | C.3 | D.6 |
设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若|PQ|=7,则△F2PQ的周长为( )
A.19 | B.26 | C.43 | D.50 |
设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( )
A.4 | B.6 | C.8 | D.12 |
在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )
A.(-2,-9) | B.(0,-5) |
C.(2,-9) | D.(1,-6) |
已知点F1,F2分别是双曲线-=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为锐角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,1+) | B.(1,) |
C.(+1,+∞) | D.(-∞,1+) |