题目内容
已知直线
:x+ay+6=0和
:(a-2)x+3y+2a=0,则
∥
的充要条件是a=( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185719550289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185719582328.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185719550289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185719582328.png)
A.3 | B.1 | C.-1 | D.3或-1 |
C
分析:首先由两直线平行可得1×3=a×(a-2),解可得a=-1或3,分别验证可得a=-1时,则l1∥l2,即可得l1∥l2?a=-1;反之将a=-1代入直线的方程,可得l1∥l2,即有a=-1?l1∥l2;综合可得l1∥l2?a=-1,即可得答案.
解答:解:根据题意,若l1∥l2,则有1×3=a×(a-2),解可得a=-1或3,
反之可得,当a=-1时,直线l1:x-y+6=0,其斜率为1,直线l2:-3x+3y-2=0,其斜率为1,且l1与l2不重合,则l1∥l2,
当a=3时,,直线l1:x+3y+6=0,直线l2:x+3y+6=0,l1与l2重合,此时l1与l2不平行,
l1∥l2?a=-1,
反之,a=-1?l1∥l2,
故l1∥l2?a=-1,
故选C.
解答:解:根据题意,若l1∥l2,则有1×3=a×(a-2),解可得a=-1或3,
反之可得,当a=-1时,直线l1:x-y+6=0,其斜率为1,直线l2:-3x+3y-2=0,其斜率为1,且l1与l2不重合,则l1∥l2,
当a=3时,,直线l1:x+3y+6=0,直线l2:x+3y+6=0,l1与l2重合,此时l1与l2不平行,
l1∥l2?a=-1,
反之,a=-1?l1∥l2,
故l1∥l2?a=-1,
故选C.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目