题目内容

如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.

(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.

(1) (2)

解析试题分析:解法一:(1)取BC中点H,连结FH,EH,设正方体棱长为2.
∵F为BCC1B1中心,E为AB中点.
∴FH⊥平面ABCD,FH=1,EH=
∴∠FEH为直线EF与平面ABCD所成角,且FH⊥EH.
∴tan∠FEH===.……6分
(2)取A1C中点O,连接OF,OA,则OF∥AE,且OF=AE.
∴四边形AEFO为平行四边形.∴AO∥EF.
∴∠AOA1为异面直线A1C与EF所成角.
∵A1A=2,AO=A1O=
∴△AOA1中,由余弦定理得cos∠A1OA=.……12分
解法二:设正方体棱长为2,以B为原点,BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.则B(0,0,0),B1(0,0,2),E(0,1,0),F(1,0,1),
C(2,0,0),A1(0,2,2).
(1)=(1,-1,1),=(0,0,2),且为平面ABCD的法向量.
∴cos<>=
设直线EF与平面ABCD所成角大小为θ.
∴sinθ=,从而tanθ=.……6分
(2)∵=(2,-2,-2).∴cos<>=
∴异面直线A1C与EF所成角的余弦值为.……12分
考点:异面直线所成的角,线面角
点评:解决的关键是根据异面直线所成角的定义, 以及线面角的概念,结合向量法来得到,属于基础题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网