题目内容

已知动点M(x,y)的坐标满足方程
(x+5)2+y2
-
(x-5)2+y2
=8,则M的轨迹方程是(  )
A.
x2
16
+
y2
9
=1
B.
x2
16
-
y2
9
=1
C.
x2
16
-
y2
9
=1
(x>0)
D.
y2
16
-
x2
9
=1
(y>0)
M设A(-5,0),B(5,0)
由于动点P(x,y)的轨迹方程为
(x+5)2+y2
-
(x-5)2+y2
=8,
则|MB|-|MA|=8,故点P到定点B(-5,0)与到定点A(5,0)的距离差为8,
则动点M(x,y)的轨迹是以(±5,0)为焦距,以8为实轴长的双曲线的右支,
由于2a=8,c=5,则b2=c2-a2=25-16=9,
故M的轨迹的标准方程为:
x2
16
-
y2
9
=1
(x>0).
故选:C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网