搜索
题目内容
当
m
<0,
n
>0时,
的值为
A.-
B
.0 C.1 D.
试题答案
相关练习册答案
解析:
=
=
=0.
答案:B
练习册系列答案
本土教辅名校学案初中生辅导系列答案
轻巧夺冠青岛专用系列答案
名题文化步步高书系名题系列答案
倍速训练法一练通系列答案
金牌教辅夺冠金卷系列答案
海淀名师名校百分卷系列答案
8848高中同步学情跟进卷系列答案
中考实战名校在招手系列答案
培优三好生系列答案
伴你学北京师范大学出版社系列答案
相关题目
设奇函数f(x)的定义域为(-∞,0)∪(0+∞),且在(0,+∞)上为增函数.
(1)若f(1)=0,解关于x的不等式:f(1+log
a
x)>0(0<a<1).
(2)若f(-2)=-1,当m>0,n>0时,恒有f(m•n)=f(m)+f(n),求|f(t)+1|<1时,t的取值范围.
已知函数F(x)=m•3
x
+n•2
x
(m,n均为非零常数).
(1)若m+n=0,解关于x的方程F(x)=0;
(2)求证:当m<0,n<0时,F(x)为R上的单调减函数;
(3)若mn<0,求满足F(x+1)≤F(x)的x的取值范围.
已知函数F(x)=m•3
x
+n•2
x
(m,n均为非零常数).
(1)若m+n=0,解关于x的方程F(x)=0;
(2)求证:当m<0,n<0时,F(x)为R上的单调减函数;
(3)若mn<0,求满足F(x+1)≤F(x)的x的取值范围.
设奇函数f(x)的定义域为(-∞,0)∪(0+∞),且在(0,+∞)上为增函数.
(1)若f(1)=0,解关于x的不等式:f(1+log
a
x)>0(0<a<1).
(2)若f(-2)=-1,当m>0,n>0时,恒有f=f(m)+f(n),求|f(t)+1|<1时,t的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总