题目内容
设n阶方阵,任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则lim |
n→∞ |
Sn |
n3+1 |
分析:取x1=1,x2=2n+3,x3=4n+5,由题设条件可知Sn=1+(2n+3)+(4n+5)+…+(2n2-1)=n3+n2,由此能够导出
的值.
lim |
n→∞ |
Sn |
n3+1 |
解答:解:不妨取x1=1,x2=2n+3,x3=4n+5,故
Sn=1+(2n+3)+(4n+5)+…+(2n2-1)
=[1+3+5+…+(2n-1)]+[2n+4n+…+n×2n]
=n2+n×n2
=n3+n2,
故
=
=1,
答案:1.
Sn=1+(2n+3)+(4n+5)+…+(2n2-1)
=[1+3+5+…+(2n-1)]+[2n+4n+…+n×2n]
=n2+n×n2
=n3+n2,
故
lim |
n→∞ |
Sn |
n3+1 |
lim |
n→∞ |
n3+n2 |
n3+1 |
答案:1.
点评:本题考查高阶矩阵和数列的极限,解题时要认真审题,仔细解答,避免不必要的错误.
练习册系列答案
相关题目