题目内容

已知cos(
π
4
+x)=
3
5
17π
12
<x<
4
,求
sin2x+2sin2x
1-tanx
的值.
分析:根据x的范围求出
π
4
+x的范围,由cos(
π
4
+x)的值利用同角三角函数间的基本关系求出sin(
π
4
+x)的值,并利用诱导公式及二倍角的余弦函数公式求出sin2x的值;把所求的式子的分子的第一项利用二倍角的正弦函数公式化简后与第二项提取2sinx,把分母利用同角三角函数间的基本关系化简,然后分子分母都提取
2
,把分子分母都化为一个角的正弦或余弦函数,将各自的值代入即可求出原式的值.
解答:解∵
17π
12
<x<
4
3
<x+
π
4
<2π

又∵cos(
π
4
+x)=
3
5

sin(x+
π
4
)=-
1-cos2(x+
π
4
)
=-
4
5

sin2x=-cos(
π
2
+2x)=1-2cos2(
π
4
+x)=
7
25

sin2x+2sin2x
1-tanx
=
2sinx(cosx+sinx)
cosx-sinx
cosx
=
sin2x•
2
•sin(
π
4
+x)
2
•cos(
π
4
+x)

=
sin2x•sin(
π
4
+x)
cos(
π
4
+x)
=
7
25
×(-
4
5
)
3
5
=-
28
75
点评:考查学生灵活运用同角三角函数间的基本关系及二倍角的正弦函数公式化简求值,是一道中档题.学生做题时应注意考虑角的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网