题目内容

已知等差数列{an}和等比数列{bn},a1=b1=1且a3+a5+a7=9,a7是b3和b7的等比中项.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)若cn=2anbn2,求数列{cn}的前n项和Tn
分析:(1)∵已知等{an}为差数列、{bn}为等比数列,及两个数列的首项,及a3+a5+a7=9,由等差数列的性质不难求出a5的值,进一步求出{an}的通项公式,再根据a7是b3和b7的等比中项,也可求出b5的值,进一步求出{bn}的通项公式.
(2)根据(1)的结论易给出数列{cn}的通项公式,再利用错位相减法,便可求得Tn
解答:解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
由题意知:a3+a5+a7=9,
3
a
5
 
=9
,∴a5=3,d=
a5-a1
4
=
1
2

an=a1+(n-1)d=
n+1
2
(n∈N+)

a7=4,∵a72=b3•b7=16,∴b52=b3•b7=16,∵b5∈N+
b5=4,∴q4=
b5
b1
=4
,∵q∈R+,∴q=
2

bn=b1qn-1=2
n-1
2
(n∈N+)

(II)因为cn=2an•bn2=(n+1)•2n-1
所以Tn=c1+c2++cn=2+3•2+4•22+…+(n+1)•2n-1.(1)
2Tn=2•2+3•22+4•23+…+n•2n-1+(n+1)•2n.(2)
由(1)减(2),
-Tn=2+2+22++2n-1-(n+1)•2n=1+
2n-1
2-1
-(n+1)•2n=-n•2n

∴Tn=n•2n
点评:等差数列性质an=am+(n-m)d,am+an=ap+aq?p+q=m+n,(m,n,p,q∈N*)
等比数列性质an=amqn-m,am•an=ap•aq?p+q=m+n,(m,n,p,q∈N*)是常用公式,注意应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网