题目内容

已知分别为椭圆的上、下焦点,是抛物线的焦点,点在第二象限的交点, 且
(1)求椭圆的方程;
(2)与圆相切的直线交椭,若椭圆上一点满足,求实数的取值范围.

(1);(2)

解析试题分析:(1)由题意知,即,利用抛物线定义,可求点的坐标,且在椭圆上,利用椭圆的定义可求,从而可求,进而确定椭圆的标准方程;(2)由直线和圆相切的充要条件,得,化简变形为,设,结合已知条件,并结合根与系数的关系,将表示点的坐标用表示出来,再将点的坐标代入椭圆方程,得的方程,同时通过消参,将表示为的形式,再求其值域即得实数的取值范围.
(1)由题知,所以,
又由抛物线定义可知,得,
于是易知,从而,
由椭圆定义知,得,故,
从而椭圆的方程为                                              6分
(2)设,则由知,
,且,   ①
又直线与圆相切,所以有,
,可得   ②
又联立消去
恒成立,且,
所以,所以得        8分
代入①式得,所以
又将②式代入得,,                            10分
易知,所以,
所以的取值范围为                    13分
考点:1、椭圆的标准方程;2、韦达定理;3、函数的值域.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网