题目内容

已知奇函数 f (x) 在 (-¥,0)∪(0,+¥) 上有意义,且在 (0,+¥) 上是增函数,f (1) = 0,又函数 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.

 .

解析试题分析:根据条件中是奇函数的这一条件可以求得使的范围,再根据的表达式,可以得到的交集即是使恒成立的所有的全体,通过参变分离可以将问题转化为求使恒成立的的取值范围,通过求函数最大值,进而可以求出的范围.
依题意,,又上是增函数,
 上也是增函数,                  1分
∴ 由                 2分
∴         3分
                                  4分
                     5分
                                   6分
                7分
             9分
,                               10分
,                   11分
                      12分
的最大值为            13分
               14分
另解:本题也可用下面解法:
1. 用单调性定义证明单调性
∵对任意

上为减函数,
同理上为增函数,得        5分
.
2. 二次函数最值讨论
解:依题意,,又上是增函数,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网