题目内容
已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则
∠DBE=
∠DBE=
55°
55°
.分析:做出辅助线连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.
解答:解:连接BC,
∵CD是⊙O的直径,
∴∠CBD=90°,
∵AE是⊙O的切线,
∴∠DBE=∠1,∠2=∠D;
又∵∠1+∠D=90°,
即∠1+∠2=90°---(1),
∠A+∠2=∠1----(2),
(1)-(2)得∠1=55°
即∠DBE=55°.
故答案为:∠DBE=55°.
∵CD是⊙O的直径,
∴∠CBD=90°,
∵AE是⊙O的切线,
∴∠DBE=∠1,∠2=∠D;
又∵∠1+∠D=90°,
即∠1+∠2=90°---(1),
∠A+∠2=∠1----(2),
(1)-(2)得∠1=55°
即∠DBE=55°.
故答案为:∠DBE=55°.
点评:本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,本题解题的关键是角之间的变换与运算,是一道较简单的题目.
练习册系列答案
相关题目