题目内容
类比三角形两边之和大于第三边,试写出空间四面体的相关性质.
解:四面体三个面的面积之和大于第四个面的面积.
①由“若”类比“若为三个向量,则”;②设圆与坐标轴的4个交点分别为A (x1,0)、B (x2,0)、C (0,y1)、D (0,y2),则;③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;④在实数列中,已知a1 = 0,,则的最大值为2.上述四个推理中,得出的结论正确的是_____________(写出所有正确结论的序号).