题目内容
已知函数f(x)=-x+2n| 1+x2 |
(1)求an;
(2)设Sn为数列{
| 1 | ||
|
| lim |
| n→∞ |
(3)若Tn=
| 3 |
| π |
| an |
| π |
| an |
分析:(1)利用导数判断函数的单调性,由函数的单调性确定函数的最小值,可求an的值.
(2)对数列{
}的同项公式进行变形、裂项求和,然后再对和求极限.
(3)化简Tn的解析式,由
<
+
<
+
≤
+
<
,及
y=cosx在[0,π]上单调递减,可得Tn<Tn+1 .
(2)对数列{
| 1 | ||
|
(3)化简Tn的解析式,由
| π |
| 6 |
| π |
| an+1 |
| π |
| 6 |
| π |
| an |
| π |
| 6 |
| π | ||
|
| π |
| 6 |
| 5π |
| 6 |
y=cosx在[0,π]上单调递减,可得Tn<Tn+1 .
解答:解:(1)由题f′(x)=
-1
令f'(x)=0,得x=

所以an=
;
(2)因为
=
=
(
-
)
所以Sn=
(1-
)
所以
Sn=
(3)Tn=
cos
-sin
=2cos(
+
),
又由
=
知0<
<
≤
,
从而
<
+
<
+
≤
+
<
又y=cosx在[0,π]上单调递减,所以Tn<Tn+1.
| 2nx | ||
|
令f'(x)=0,得x=
| 1 | ||
|
所以an=
| 4n2-1 |
(2)因为
| 1 | ||
|
| 1 |
| 4n2-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以Sn=
| 1 |
| 2 |
| 1 |
| 2n+1 |
所以
| lim |
| n→∞ |
| 1 |
| 2 |
(3)Tn=
| 3 |
| π |
| an |
| π |
| an |
| π |
| an |
| π |
| 6 |
又由
| 1 |
| an |
| 1 | ||
|
| 1 |
| an+1 |
| 1 |
| an |
| 1 | ||
|
从而
| π |
| 6 |
| π |
| an+1 |
| π |
| 6 |
| π |
| an |
| π |
| 6 |
| π | ||
|
| π |
| 6 |
| 5π |
| 6 |
又y=cosx在[0,π]上单调递减,所以Tn<Tn+1.
点评:本题考查在闭区间上利用导数求函数的最值,求数列的极限,及用裂项法进行数列求和.是中档题.
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|