题目内容

已知圆的圆心在直线上,且与轴交于两点,.

1求圆的方程;

2)求过点的切线方程.

 

1;(2.

【解析】

试题分析:(1)先联立直线的中垂线方程与直线方程,求出交点的坐标即圆心的坐标,然后再计算出,最后就可写出圆的标准方程;(2)求过点的圆的切线方程问题,先判断点在圆上还是在圆外,若点在圆上,则所求直线的斜率为,由点斜式即可写出切线的方程,若点在圆外,则可设切线方程为(此时注意验证斜率不存在的情形),然后由圆心到切线的距离等于半径,求出即可求出切线的方程.

试题解析:(1)因为轴交于两点,,所以圆心在直线

即圆心的坐标为 2

半径

所以圆的方程为 4

2)由坐标可知点在圆上,由,可知切线的斜率为 6

故过点的切线方程为 8.

考点:1.圆的方程;2.直线与圆的位置关系.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网