题目内容
△ABC是正三角形,线段EA和DC都垂直于平面ABC,设EA=AB=2a,DC=a,且F为BE的中点,如图所示.
(1)求证:DF∥平面ABC;
(2)求证:AF⊥BD;
(3)求平面BDE与平面ABC所成的较小二面角的大小.
(1)求证:DF∥平面ABC;
(2)求证:AF⊥BD;
(3)求平面BDE与平面ABC所成的较小二面角的大小.
分析:(1)利用三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理即可证明;
(2)利用线面、面面垂直的判定和性质定理即可证明;
(3)延长ED交AC延长线于G′,连BG′,只要证明BG′⊥平面ABE即可得到∠ABE为所求的平面BDE与平面ABC所成二面角,在等腰直角三角形ABE中即可得到.
(2)利用线面、面面垂直的判定和性质定理即可证明;
(3)延长ED交AC延长线于G′,连BG′,只要证明BG′⊥平面ABE即可得到∠ABE为所求的平面BDE与平面ABC所成二面角,在等腰直角三角形ABE中即可得到.
解答:解:(1)证明:如图所示,取AB中点G,连CG、FG.
∵EF=FB,AG=GB,
∴FG
EA.
又DC
EA,∴FG
DC.
∴四边形CDFG为平行四边形,∴DF∥CG.
∵DF?平面ABC,CG?平面ABC,
∴DF∥平面ABC.
(2)证明:∵EA⊥平面ABC,
∴AE⊥CG.
又△ABC是正三角形,G是AB的中点,
∴CG⊥AB.
∴CG⊥平面AEB.
又∵DE∥CG,
∴DF⊥平面AEB.
∴平面AEB⊥平面BDE.
∵AE=AB,EF=FB,
∴AF⊥BE.
∴AF⊥平面BED,
∴AF⊥BD.
(3)解:延长ED交AC延长线于G′,连BG′.
由CD=
AE,CD∥AE知,D为EG′的中点,
∴FD∥BG′.
又CG⊥平面ABE,FD∥CG.
∴BG′⊥平面ABE.
∴∠EBA为所求二面角的平面角.
在等腰直角三角形AEB中,可得∠ABE=45°.
∴平面BDE与平面ABC所成的较小二面角是45°.
∵EF=FB,AG=GB,
∴FG
∥ |
. |
1 |
2 |
又DC
∥ |
. |
1 |
2 |
∥ |
. |
∴四边形CDFG为平行四边形,∴DF∥CG.
∵DF?平面ABC,CG?平面ABC,
∴DF∥平面ABC.
(2)证明:∵EA⊥平面ABC,
∴AE⊥CG.
又△ABC是正三角形,G是AB的中点,
∴CG⊥AB.
∴CG⊥平面AEB.
又∵DE∥CG,
∴DF⊥平面AEB.
∴平面AEB⊥平面BDE.
∵AE=AB,EF=FB,
∴AF⊥BE.
∴AF⊥平面BED,
∴AF⊥BD.
(3)解:延长ED交AC延长线于G′,连BG′.
由CD=
1 |
2 |
∴FD∥BG′.
又CG⊥平面ABE,FD∥CG.
∴BG′⊥平面ABE.
∴∠EBA为所求二面角的平面角.
在等腰直角三角形AEB中,可得∠ABE=45°.
∴平面BDE与平面ABC所成的较小二面角是45°.
点评:熟练掌握三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理与线面、面面垂直的判定和性质定理及二面角的求法是解题的关键.
练习册系列答案
相关题目