题目内容

若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是


  1. A.
    f(x)为奇函数
  2. B.
    f(x)为偶函数
  3. C.
    f(x)+1为奇函数
  4. D.
    f(x)+1为偶函数
C
分析:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,由此得f(0)=-1,f(x)+1=-f(-x)-1=-[f(-x)+1],所以f(x)+1为奇函数.
解答:∵对任意x1,x2∈R有
f(x1+x2)=f(x1)+f(x2)+1,
∴令x1=x2=0,得f(0)=-1
∴令x1=x,x2=-x,得f(0)=f(x)+f(-x)+1,
∴f(x)+1=-f(-x)-1=-[f(-x)+1],
∴f(x)+1为奇函数.
故选C
点评:本题考查函数的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网