题目内容
(本小题14分)
已知等比数列
满足
,且
是
,
的等差中项.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,
,求使
成立的正整数
的最小值.
已知等比数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314116513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314131692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314147495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314163352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314178346.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314116513.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314209804.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314225755.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314241754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314256305.png)
(1)
(2)使
成立的正整数
的最小值为10
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314272631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314241754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314256305.png)
试题分析:解:(Ⅰ)设等比数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314319506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314350319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314365320.png)
依题意,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053143811180.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053145061613.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314521335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314553632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314568364.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314584434.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314599388.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314584434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314646445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314272631.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053146931224.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314709974.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053147241093.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053147551402.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314771760.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053147871109.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314818666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314833430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314849441.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314865508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314241754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005314256305.png)
点评:解决该试题的关键是对于等差数列和等比数列的通项公式和性质的熟练运用,以及分组求和,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容