题目内容

PA,PB,PC是从点P引出的三条射线,每两条的夹角均为60°,则直线PC与平面PAB所成角的余弦值为(  )
A、
1
2
B、
6
3
C、
3
3
D、
3
2
分析:过PC上一点D作DO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角,说明点O在∠APB的平分线上,通过直角三角形PED、DOP,求出直线PC与平面PAB所成角的余弦值.
解答:精英家教网解:过PC上一点D作DO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角.
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
设PE=1,∵∠OPE=30°∴OP=
1
cos30°
=
2
3
3

在直角△PED中,∠DPE=60°,PE=1,则PD=2.
在直角△DOP中,OP=
2
3
3
,PD=2.则cos∠DPO=
OP
PD
=
3
3

即直线PC与平面PAB所成角的余弦值是
3
3

故选C.
点评:本题是中档题,考查直线与平面所成角正弦值的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,熟练掌握基本定理、基本方法是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网