题目内容
如图,已知平行六面体ABCD-A1B1C1D1.
(I)若G为△ABC的重心,,设,用向量a、b、c表示向量;
(II)若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD中点,AC1∩BD1=O,求证;OE⊥平面ABC1D1.
解:(I)依题意,=
∵G为△ABC的重心,
∴=×=
又∵
∴[]
=
=-
(II)证明:连接C1E,AE,
∵平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1
∴C1E=AE,
∴△C1EA为等腰三角形
∵O为AC1的中点,
∴OE⊥AC1
同理可证 OE⊥BD1
∵AC1∩BD1=O,
∴OE⊥平面ABC1D1.
分析:(I)利用向量加法的三角形法则及重心的性质,将用基底表示,再在三角形A1AG中,将用基底表示;
(II)连接C1E,AE,由已知证明△C1EA为等腰三角形,从而OE⊥AC1,同理可证明OE⊥BD1,最后由线面垂直的判定定理证明结论
点评:本题考查了空间向量的基本定理及其应用,向量加法的三角形法则,重心的性质及线面垂直的判定定理
∵G为△ABC的重心,
∴=×=
又∵
∴[]
=
=-
(II)证明:连接C1E,AE,
∵平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1
∴C1E=AE,
∴△C1EA为等腰三角形
∵O为AC1的中点,
∴OE⊥AC1
同理可证 OE⊥BD1
∵AC1∩BD1=O,
∴OE⊥平面ABC1D1.
分析:(I)利用向量加法的三角形法则及重心的性质,将用基底表示,再在三角形A1AG中,将用基底表示;
(II)连接C1E,AE,由已知证明△C1EA为等腰三角形,从而OE⊥AC1,同理可证明OE⊥BD1,最后由线面垂直的判定定理证明结论
点评:本题考查了空间向量的基本定理及其应用,向量加法的三角形法则,重心的性质及线面垂直的判定定理
练习册系列答案
相关题目