题目内容
(2012•海口模拟)选修4-5:不等式选讲
已知函数f(x)=|2x+1|,g(x)=|x|+a-1
(1)当a=1,解不等式f(x)≥g(x);
(2)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
已知函数f(x)=|2x+1|,g(x)=|x|+a-1
(1)当a=1,解不等式f(x)≥g(x);
(2)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
分析:(1)先写出当a=1时的不等式|2x+1|≥|x|,再利用两边平方整理化成一元二次不等式即可解决问题;
(2)先由f(x)≤g(x)分离出参数a得a-1≥|2x+1|-|x|,令h(x)=|2x+1|-|x|,下面求得h(x)的最小值,从而所求实数a的范围.
(2)先由f(x)≤g(x)分离出参数a得a-1≥|2x+1|-|x|,令h(x)=|2x+1|-|x|,下面求得h(x)的最小值,从而所求实数a的范围.
解答:解:(1)当a=1时,由f(x)≥g(x)得|2x+1|≥|x|,
两边平方整理得3x2+4x+1≥0,解得x≤-1或x≥-
,
∴原不等式的解集为(-∞,-1]∪[-
,+∞)…(5分)
(Ⅱ)由f(x)≤g(x)得a-1≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,则 h(x)=
…(7分)
故h(x)min=h(-
)=-
,从而所求实数a的范围为a-1≥-
,即a≥
…(10分)
两边平方整理得3x2+4x+1≥0,解得x≤-1或x≥-
1 |
3 |
∴原不等式的解集为(-∞,-1]∪[-
1 |
3 |
(Ⅱ)由f(x)≤g(x)得a-1≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,则 h(x)=
|
故h(x)min=h(-
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
点评:本题主要考查了绝对值不等式的解法、函数存在性问题.对于函数存在性问题,处理的方法是:利用分离参数法转化为求函数的最值问题解决.
练习册系列答案
相关题目